Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein

Abstract

TETANUS toxin inhibits neurotransmitter release by selectively blocking fusion of synaptic vesicles1,2. Recently tetanus toxin was shown to proteolytically degrade synaptobrevin II (also named VAMP-2), a synaptic vesicle-specific protein3,4, in vitro and in nerve terminals5,6. As targets of tetanus toxin, synaptobrevins probably function in the exocytotic fusion of synaptic vesicles. Here we describe a new synaptobrevin homologue, cellubrevin, that is present in all cells and tissues tested and demonstrate that it is a membrane trafficking protein of a constitutively recycling pathway. Like synaptobrevin II, cellubrevin is proteolysed by tetanus toxin light chain in vitro and after transfection. Our results suggest that constitutive and regulated vesicular pathways use homologous proteins for membrane trafficking, probably for membrane fusion at the plasma membrane, indicating a greater mechanistic and evolutionary similarity between these pathways than previously thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Simpson, L. L. (ed.) Botulinum Neurotoxin and Tetanus Toxin (Academic, San Diego, 1989).

  2. Niemann, H. in A Sourcebook of Bacterial Protein Toxins (eds Alouf, J. E. & Freer, J. H.) 303–348 (Academic, San Diego, 1991).

    Google Scholar 

  3. Südhof, T. C. & Jahn, R. Neuron 6, 665–677 (1991).

    Article  Google Scholar 

  4. Trimble, W. S., Linial, M. & Scheller, R. A. Rev. Neurosci. 14, 665–677 (1991).

    Article  Google Scholar 

  5. Schiavo, G. et al. Nature 359, 832–835 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Link, E. et al. Biochem. Biophys. Res. Commun. 189, 1017–1023 (1992).

    Article  CAS  Google Scholar 

  7. Burgess, T. L. & Kelly, R. B. A. Rev. Cell Biol. 3, 243–293 (1987).

    Article  CAS  Google Scholar 

  8. Huttner, W. B. & Dotti, C. G. Curr. Opin. Neurobiol. 1, 388–392 (1991).

    Article  CAS  Google Scholar 

  9. Hubbard, A. L. Curr. Opin. Cell Biol. 1, 675–683 (1989).

    Article  CAS  Google Scholar 

  10. Smythe, E. & Warren, G. Europ. J. Biochem. 202, 689–699 (1991).

    Article  CAS  Google Scholar 

  11. Regnier-Vigouroux, A., Tooze, S. A. & Huttner, W. B. EMB0 J. 10, 3589–3601 (1991).

    Article  CAS  Google Scholar 

  12. Dotti, C. G. & Simons, K. Cell 62, 63–72 (1990).

    Article  CAS  Google Scholar 

  13. Johnston, P. A. et al. EMB0 J. 8, 2863–2872 (1989).

    Article  CAS  Google Scholar 

  14. Cameron, P. L., Südhof, T. C., Jahn, R. & De Camilli, P. J. Cell Biol. 115, 151–164 (1991).

    Article  CAS  Google Scholar 

  15. Linstedt, A. D. & Kelly, R. B. Neuron 7, 309–317 (1991).

    Article  CAS  Google Scholar 

  16. Marsal, J., Egea, G., Solsona, C., Rabasseda, X. & Blasi, J. Proc. natn. Acad. Sci. U.S.A. 86, 372–376 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Südhof, T. C., Baumert, M., Perin, M. S. & Jahn, R. Neuron 2, 1474–1481 (1989).

    Article  Google Scholar 

  18. Trimble, W. S., Cowan, D. M. & Scheller, R. H. Proc. natn. Acad. Sci. U.S.A. 85, 4538–4542 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Elferink, L. A., Trimble, W. S. & Scheller, R. H. J. biol. Chem. 264, 11061–11064 (1989).

    CAS  PubMed  Google Scholar 

  20. Archer, B. T., Ozcelik, T., Jahn, R., Francke, U. & Südhof, T. C. J. biol. Chem. 265, 17267–17273 (1990).

    CAS  PubMed  Google Scholar 

  21. Südhof, T. C. J. biol. Chem. 265, 1988–1992 (1990).

    Google Scholar 

  22. Südhof, T. C., Lottspeich, F., Greengard, P., Mehl, E. & Jahn, R. Science 238, 1142–1144 (1987).

    Article  ADS  Google Scholar 

  23. Bordier, C. J. biol. Chem. 256, 1604–1607 (1981).

    CAS  PubMed  Google Scholar 

  24. Burger, P. M. et al. Neuron 3, 715–720 (1989).

    Article  CAS  Google Scholar 

  25. Gorman, D. in DNA Cloning Vol. 2 (ed. Glover, D. M.) 143–190 (IRL, Oxford, 1985).

    Google Scholar 

  26. Maycox, P. R., Link, E., Reetz, A., Morris, S. A. & Jahn, R. J. Cell Biol. 118, 1379–1388 (1992).

    Article  CAS  Google Scholar 

  27. Eisel, U. et al. EMBO J. 5, 2495–2502 (1986).

    Article  CAS  Google Scholar 

  28. Fairweather, N. J. & Lyness, V. A. Nucleic Acids Res. 14, 7809–7812 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, H., Ushkaryov, Y., Edelmann, L. et al. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346–349 (1993). https://doi.org/10.1038/364346a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364346a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing