Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins

Abstract

Do the coats on vesicles budded from the Golgi apparatus actually cause the budding, or do they simply coat buds (Fig. 1)? One view (the membrane-mediated budding hypothesis1) is that budding is an intrinsic property of Golgi membranes not requiring extrinsic coat proteins. Assembly of coats from dispersed subunits is superimposed upon the intrinsic budding process and is proposed to convert the tips of tubules into vesicles. The alternative view (the coat-mediated budding hypothesis1) is that coat formation provides the essential driving force for budding. The membrane-mediated budding hypothesis was inspired by the microtubule-dependent extension of apparently uncoated, 90-nm-diameter membrane tubules from the Golgi apparatus2 and other organelles3–5 in vivo after treatment with brefeldin A, a drug that inhibits the assembly of coat proteins onto Golgi membranes6–9. This hypothesis predicts that tubules will be extended when coat proteins are unavailable to convert tubule-derived membrane into vesicles. Here we use a cell-free system in which coated vesicles are formed from Golgi cisternae to show that, on the contrary, when budding diminishes as a result of immunodepletion of coat protein pools, tubules are not formed at the expense of vesicles. We conclude that coat proteins are required for budding from Golgi membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klausner, R. D., Donaldson, J. G. & Lippincott-Schwartz, J. J. Cell Biol. 116, 1071–1080 (1992).

    Article  CAS  Google Scholar 

  2. Lippincott-Schwartz, J. et al. Cell 60, 821–836 (1990).

    Article  CAS  Google Scholar 

  3. Hunziker, W., Whitney, J. A. & Mellman, I. Cell 67, 617–628 (1991).

    Article  CAS  Google Scholar 

  4. Lippincott-Schwartz, J. et al. Cell 67, 601–616 (1991).

    Article  CAS  Google Scholar 

  5. Wood, S. A., Park, J. E. & Brown, W. J. Cell 67, 691–600 (1991).

    Article  Google Scholar 

  6. Donaldson, J. G. et al. J. Cell Biol 111, 2295–2306 (1990).

    Article  CAS  Google Scholar 

  7. Duden, R. et al. Cell 64, 649–665 (1991).

    Article  CAS  Google Scholar 

  8. Orci, L. et al. Cell 64, 1183–1195 (1991).

    Article  CAS  Google Scholar 

  9. Robinson, M. S. & Kreis, T. E. Cell 69, 129–138 (1992).

    Article  CAS  Google Scholar 

  10. Balch, W. E. et al. Cell 39, 405–416 (1984)

    Article  CAS  Google Scholar 

  11. Orci, L., Glick, B. S. & Rothman, J. E. Cell 46, 171–184 (1986).

    Article  CAS  Google Scholar 

  12. Melancon, P. et al. Cell 51, 1053–1062 (1987).

    Article  CAS  Google Scholar 

  13. Malhotra, V. et al. Cell 58, 329–336 (1989).

    Article  CAS  Google Scholar 

  14. Serafini, T. et al. Nature 349, 215–220 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Waters, M. G., Serafini, T. & Rothman, J. E. Nature 349, 248–251 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Kahn, R. A. et al. J. biol Chem. 266, 2606–2614 (1991).

    CAS  PubMed  Google Scholar 

  17. Serafini, T. et al. Cell 67, 239–253 (1991).

    Article  CAS  Google Scholar 

  18. Donaldson, J. G. et al. Science 254, 1197–1199 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Donaldson, J. G. et al. Proc. natn. Acad. Sci. U.S.A. 89, 6408–6412 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Helms, J. B. & Rothman, J. E. Nature 360, 352–354 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Mellman, I. & Simons, K. Cell 68, 829–840 (1992).

    Article  CAS  Google Scholar 

  22. Pelham, H. R. B. Cell 67, 449–451 (1991).

    Article  CAS  Google Scholar 

  23. Pearse, B. M. F. & Bretscher, M. S. A. Rev Biochem 50, 85–101 (1981).

    Article  CAS  Google Scholar 

  24. Moore, M. S., Mahaffey, D. T., Brodsky, F. M. & Anderson, R. G. W. Science 236, 558–563 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Smythe, E., Pypaert, M., Lucocq, J. & Warren, G. J. Cell Biol. 108, 843–853 (1989).

    Article  CAS  Google Scholar 

  26. Orci, L. et al. Cell 56, 357–368 (1989).

    Article  CAS  Google Scholar 

  27. Cluett E. B., Wood, S. A., Banta, M. & Brown, W. J. J. Cell Biol. 120, 15–24 (1993).

    Article  CAS  Google Scholar 

  28. Allan, V. J. & Kreis, T. E. J. Cell Biol. 103, 2229–2239 (1986).

    Article  CAS  Google Scholar 

  29. Waters, M. G., Beckers, C. J. M. & Rothman, J. E. Meth. Enzym. 219, 331 (1992).

    Article  CAS  Google Scholar 

  30. Palmer, D. J., Orci, L. & Rothman, J. E. J. biol. Chem. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orci, L., Palmer, D., Ravazzola, M. et al. Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins. Nature 362, 648–652 (1993). https://doi.org/10.1038/362648a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362648a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing