Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deformation of a weak subducted slab and variation of seismicity with depth

Abstract

OCEANIC lithosphere is assumed to possess platelike properties whether it is lying at the Earth's surface or descending deep into the mantle; yet the geometries of subducting slabs indicate significant deformation as they descend through the mantle1–4, suggesting that lithospheric plates might be so weakened during subduction as to act not as a rigid solid, but as a viscous fluid. Numerical and laboratory experiments have shown that fluid 'slabs' can indeed take on realistic profiles5–7; however, it has not been clear whether a fluid or 'weak' model of slab dynamics can account for deep earthquakes, which are usually ascribed to the deformation of a rigid or 'strong' slab. Here we show, using numerical simulations of slab evolution, that a weak slab model is in fact consistent with seismic observations. Assuming that earthquakes occur at a rate proportional to deformation rate, we reproduce the observed variation with depth of seismicity rate and focal mechanisms, and the cessation of seismicity at 670 km depth. Provided that sinking material encounters resistance at depth (here modelled as a viscosity jump at 670 km), the pattern of seismicity can be explained by any mechanism for deep earthquakes in which the rate of seismicity is proportional to strain rate in the slab.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bevis, M. Nature 323, 52–53 (1986).

    Article  ADS  Google Scholar 

  2. Fischer, K. & Jordan, T. H. J. geophys. Res. 96, 14429–14444 (1991).

    Article  ADS  Google Scholar 

  3. Giardini, D. & Woodhouse, J. H. Nature 307, 505–509 (1984).

    Article  ADS  Google Scholar 

  4. Giardini, D. & Woodhouse, J. H. Nature 319, 551–555 (1986).

    Article  ADS  Google Scholar 

  5. Tao, W. & O'Connell, R. J. J. geophys. Res. 97, 8877–8904 (1992).

    Article  ADS  Google Scholar 

  6. Gurnis, M. & Hager, B. H. Nature 335, 317–321 (1988).

    Article  ADS  Google Scholar 

  7. Kincaid, C. & Olson, P. J. geophys. Res. 92, 13832–13840 (1987).

    Article  ADS  Google Scholar 

  8. Vassiliou, M. S., Hager, B. H. & Raefsky, A. A. J. Geodyn. 1, 11–28 (1984).

    Article  Google Scholar 

  9. Ogawa, M. J. geophys. Res. 92, 13801–13810 (1987).

    Article  ADS  Google Scholar 

  10. Hobbs, B. E. & Ord, A. J. geophys. Res. 93, 10521–10540 (1988).

    Article  ADS  Google Scholar 

  11. Green II, H. W., Young, T. E., Walker, D. & Scholz, C. H. Nature 348, 720–722 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Meade, C. & Jeanloz, R. Science 252, 68–72 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Apperson, K. D. & Frohlich, C. J. geophys. Res. 92, 13821–13831 (1987).

    Article  ADS  Google Scholar 

  15. Isacks, B. & Molnar, P. Nature 223, 1121–1124 (1969).

    Article  ADS  Google Scholar 

  16. Isacks, B. & Molnar, P. Rev. Geophys. Space phys. 9, 103–174 (1971).

    Article  ADS  Google Scholar 

  17. Creager, K. C. & Jordan, T. H. J. geophys. Res. 91, 3573–3589 (1986).

    Article  ADS  Google Scholar 

  18. Gable, C. W., O'Connell, R. J. & Travis, B. J. J. geophys. Res. 96, 8391–8405 (1991).

    Article  ADS  Google Scholar 

  19. Hager, B. H. & O'Connell, R. J. J. geophys. Res. 86, 4843–4867 (1981).

    Article  ADS  Google Scholar 

  20. Ricard, Y. & Vigny, C. J. geophys. Res. 94, 17543–17559 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, W., O'Connell, R. Deformation of a weak subducted slab and variation of seismicity with depth. Nature 361, 626–628 (1993). https://doi.org/10.1038/361626a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361626a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing