Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-pressure viscosity of glycerol measured by centrifugal-force viscometry

Abstract

As a liquid approaches its glass transition temperature Tg, its viscosity increases rapidly. The glass transition can be induced either by lowering the temperature through Tg or by increasing the pressure (and thereby the density) at constant temperature. The effect of temperature on viscosity is well studied, but the density dependence of viscosity close to Tg is less well understood. Here we report measurements of the viscosity of glycerol, one of the most widely studied glass-forming liquids, at pressures of up to 3 GPa using centrifugal-force viscometry in a diamond-anvil cell. We find that free-volume theory1,2, which ascribes an incom-pressible hard-sphere volume to the molecules, provides a good description of the viscosity over the entire pressure range (and by extrapolation, up to the glass transition at 5 GPa). We are thus able to predict the effect of pressure on Tg and on the glass fragility (the structural breakdown in the liquid close to the transition).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Doolittle, A. K. J. appl. Phys. 22, 1471–1475 (1951).

    Article  CAS  ADS  Google Scholar 

  2. Cohen, M. H. & Turnbull, D. J. chem. Phys. 31, 1164–1169 (1959).

    Article  CAS  ADS  Google Scholar 

  3. Jeong, Y. H. Phys. Rev. A36, 766–773 (1987).

    Article  CAS  ADS  Google Scholar 

  4. Slie, W. M. & Madigosky, W. M. J. chem. Phys. 48, 2810–2817 (1968).

    Article  CAS  ADS  Google Scholar 

  5. McDuffie, G. E. & Kelly, M. V. J. chem. Phys. 41, 2666–2670 (1964).

    Article  CAS  ADS  Google Scholar 

  6. Johari, G. P. & Whalley, E. Faraday Symp. chem. Soc. 6, 23–41 (1972).

    Article  Google Scholar 

  7. Scaife, W. G. S. J. Phys. D: Appl. Phys. 9, 1489–1499 (1976).

    Article  CAS  ADS  Google Scholar 

  8. Sandberg, O., Andersson, P. & Backström, G. in Proc. 7th Symp. thermophys. Prop. 181–184 (1977).

    Google Scholar 

  9. Bridgman, P. W. Proc. Am. Acad. Arts Sci. 61, 57–99 (1926).

    Article  CAS  Google Scholar 

  10. King, H. E., Herbolzheimer, E. & Cook, R. L. J. appl. Phys. 71, 2071–2081 (1992).

    Article  CAS  ADS  Google Scholar 

  11. Barnett, J. D. & Bosco, C. D. J. appl. Phys. 40, 3144–3150 (1969).

    Article  CAS  ADS  Google Scholar 

  12. Dean, J. A. Lange's Handbook of Chemistry (McGraw-Hill, New York, 1985).

    Google Scholar 

  13. Bridgman, P. W. Proc. Am. Acad. Arts Sci. 67, 1–27 (1932).

    Article  Google Scholar 

  14. Matheson, A. J. J. chem. Phys. 44, 695–699 (1966).

    Article  CAS  ADS  Google Scholar 

  15. Haward, R. N. J. Macromol. Sci., Revs. macromol. Chem. C4, 191–242 (1970).

    Article  Google Scholar 

  16. Woodcock, L. V. & Angell, C. A. Phys. Rev. Lett. 47, 1129–1132 (1981).

    Article  CAS  ADS  Google Scholar 

  17. Ben-Amotz, D. & Herschbach, D. R. J. phys. Chem. 94, 1038–1047 (1990).

    Article  CAS  Google Scholar 

  18. Hogenboom, D. L., Webb, W. & Dixon, J. A. J. chem. Phys. 46, 2586–2598 (1967).

    Article  CAS  ADS  Google Scholar 

  19. Adam, G. & Gibbs, J. H. J. Chem. Phys. 43, 139–146 (1965).

    Article  CAS  ADS  Google Scholar 

  20. Angell, C. A. J. non-cryst. Solids 131–133, 13–31 (1991).

    Article  ADS  Google Scholar 

  21. Gupta, P. K. J. Am. Ceram. Soc. 70, C152–C153 (1987).

    Article  Google Scholar 

  22. Laughlin, W. T. Viscous Flow and Volume Relaxation in Simple Glass-Forming Liquids (MIT, 1969).

    Google Scholar 

  23. Kauzmann, W. Chem. Rev. 43, 219 (1948).

    Article  CAS  Google Scholar 

  24. Angell, C. A., Pollard, L. J. & Strauss, W. J. chem. Phys. 50, 2694–2705 (1969).

    Article  CAS  ADS  Google Scholar 

  25. Angell, C. A., Pollard, L. J. & Strauss, W. J. Solution Chem. A, 517–528 (1972).

    Article  Google Scholar 

  26. Oliver, W. F., Herbst, C. A., Lindsay, S. M. & Wolf, G. H. Phys. Rev. Lett. 67, 2795–2798 (1991).

    Article  CAS  ADS  Google Scholar 

  27. Yasutomi, S., Bair, S. & Winer, W. O. J. Trib. 106, 291–303 (1984).

    Article  CAS  Google Scholar 

  28. Karger, N., Vardag, T. & Lüdemann, H.-D. J. chem. Phys. 93, 3437–3444 (1990).

    Article  CAS  ADS  Google Scholar 

  29. O'Reilly, J. M. J. Polym. Sci. 57, 429–444 (1962).

    Article  CAS  ADS  Google Scholar 

  30. Schlosser, H. & Ferrante, J. J. Phys.: Condens. Matter 1, 2727–2730 (1989).

    ADS  Google Scholar 

  31. Piermarini, G. J., Block, S. & Barnett, J. D. J. Appl. Phys. 44, 5377–5382 (1973).

    Article  CAS  ADS  Google Scholar 

  32. DiMarzio, E. A., Gibbs, J. H., Fleming, P. D. & Sanchez, I. C. Macromolecules 9, 763–771 (1976).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbst, C., Cook, R. & King Jr, H. High-pressure viscosity of glycerol measured by centrifugal-force viscometry. Nature 361, 518–520 (1993). https://doi.org/10.1038/361518a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361518a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing