Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superconductivity in barium fulleride

Abstract

INTERCALATING solid C60 with dopant atoms yields materials with a remarkable range of properties1. Alkali metal atoms, for example, readily form charge-transfer compounds2,3, AxC60 (where A is an alkali metal), which can be metallic, superconducting or insulating depending on the dopant concentration4–9. In all cases, the superconducting phase has a face-centred cubic (f.c.c.) structure and stoichiometry A3C60, which suggests a common mechanism for superconductivity dependent, at least in part, on the external coordination number of the C60 molecules. More recently, it has been shown10 that the alkaline earth metal calcium can also be intercalated with fulleride to form a superconducting phase, again with a f.c.c.-derived structure, near a Ca:C60 ratio of 5:1. Here we report the intercalation of fulleride with barium, in which a pure body-centred cubic phase with a lattice constant of 11.171 Å is realized near a stoichiometry of Ba6C60. This phase is also superconducting (with a transition temperature of 7 K), suggesting that the mechanism of superconductivity is related to an intrinsic property of the C60 molecules, rather than the external coordination number.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fullerenes (eds Hammond, G. S. & Kuck, V. J.) (American Chemical Society, 1992).

  2. Haddon, R. C. et al. Nature 350, 320–322 (1991).

    CAS  Google Scholar 

  3. Stephens, P. W. et al. Nature 351, 632 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Hebard, A. F. et al. Nature 350, 600–601 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Holczer, K. et al. Science 252, 1154–1157 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Rosseinsky, M. J. et al. Phys. Rev. Lett. 66, 2830–2832 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Chen, C.-C., Kelty, S. P. & Lieber, C. M. Science 253, 886 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Fleming, R. M. et al. Nature 352, 701 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Zhou, O. et al. Nature 351, 462 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Kortan, A. R. et al. Nature 355, 529 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Fischer, J. E., Heiney, P. A., Luzzi, D. E. & Cox, D. E. in Fullferenes (eds Hammond, G. S. & Kuck, V. J.) (American Chemical Society, 1992).

    Google Scholar 

  12. Kortan, A. R. et al. preprint, AT&T Bell Labs; Phys. Rev. Lett., (submitted).

  13. Glarum, S. H., Duclos, S. J. & Haddon, R. C. J. Am. chem. Soc. 114, 1446 (1992).

    Article  Google Scholar 

  14. Fleming, R. M. et al. Nature 352, 787 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Haddon, R. C. et al. ACS Symp. Series No. 481 (in the press).

  16. Schluter, M., Lannoo, M., Needels, M., Baraff, G. A. & Tomanek, D. Phys. Rev. Lett. 68, 526 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Saito, S. & Oshiyama, A. Solid State Commun. 83, 107 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Fischer, J. E., Kim, H. J. & Cajipe, V. B. Phys. Rev. B36, 4449 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Varma, C. M., Zaanen, J. & Raghavachari, K. Science 254, 989–992 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Ramirez, A. P. et al. Phys. Rev. Lett. 68, 1058 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortan, A., Kopylov, N., Glarum, S. et al. Superconductivity in barium fulleride. Nature 360, 566–568 (1992). https://doi.org/10.1038/360566a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360566a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing