Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wing bone stresses in free flying bats and the evolution of skeletal design for flight

Abstract

THE primary mechanical functions of limb bones are to resist deformation, and hence provide stiff levers against which muscles can act, and to be sufficiently strong to prevent breaking under static or dynamic loads which arise from normal and accidental activities1. If bones perform these functions with a minimum amount of material, the energetic costs associated with building, maintaining and transporting the skeleton will be minimized2. Appropriate skeletal architecture for minimizing mass while maximizing strength depends on forces imposed on structural elements. In the evolutionary acquisition of flight in the bat lineage, the forelimb skeleton must have come to experience locomotor-forces that differed from those engendered by the terrestrial locomotion of non-flying bat relatives. Here we successfully measure in vivo strain on the wing bones of flying mammals. Our data demonstrate that torsion and shear are unique and crucial features of skeletal biomechanics during flight, and suggest that the evolution of skeletal design in bats and other flying vertebrates may be driven by the need to resist these loads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alexander, R. M. Ker, R. F. & Bennett, M. B. J. Zool., Lond. 222, 471–478 (1990).

    Article  Google Scholar 

  2. Alexander, R. M. Sci. Prog., Oxf. 67, 109–130 (1981).

    CAS  Google Scholar 

  3. Rayner, J. M. V. in Recent Advances in the Study of Bats (eds Fenton, M. B., Racey, P. & Rayner, J. V. M.) 23–42 (Cambridge Univ. Press, UK, 1987).

    Google Scholar 

  4. Carter, D. R. J. Biomech. 11, 199–202 (1978).

    Article  CAS  Google Scholar 

  5. Biewener, A. A. & Taylor, C. R. J. exp. Biol. 123, 383–400 (1986).

    CAS  PubMed  Google Scholar 

  6. Biewener, A. A., Swartz, S. M. & Bertram, J. E. A. Calc. Tiss. Int. 39, 390–395 (1986).

    Article  CAS  Google Scholar 

  7. Rubin, C. T. & Lanyon, L. E. J. theor. Biol. 107, 321–327 (1984).

    Article  CAS  Google Scholar 

  8. Pennycuick, C. J. J. exp. Biol. 46, 219–233 (1967).

    CAS  PubMed  Google Scholar 

  9. Biewener, A. A., Thomason, J. & Lanyon, L. E. J. Zool., Lond. 201, 67–82 (1983).

    Article  Google Scholar 

  10. Biewener, A. A., Thomason, J. & Lanyon, L. E. J. Zool., Lond. 214, 547–565 (1988).

    Article  Google Scholar 

  11. Rubin, C. T. & Lanyon, L. E. J. exp. Biol. 101, 187–212 (1982).

    CAS  PubMed  Google Scholar 

  12. Bertram, J. E. A. & Biewener, A. A. J. theor. Biol. 131, 75–92 (1988).

    Article  CAS  Google Scholar 

  13. Nordin, M. & Frankel, V. H. in Basic Biomechanics of the Musculoskeletal System (eds Nordin, M. & Frankel, V. H.) 3–29 (Lea & Febiger, Philadelphia and London, 1989)

    Google Scholar 

  14. Currey, J. D. & Alexander, R. M. J. Zool. Lond. 206, 453–468 (1985).

    Article  Google Scholar 

  15. Pough, F. H., Heiser, J. B. & McFarland, W. N. Vertebrate Life (Macmillan, New York, 1985).

    Google Scholar 

  16. Prange, H. D., Anderson, J. F. & Rahn, H. Am. Nat. 113, 103–122 (1979).

    Article  Google Scholar 

  17. Lanyon, L. E. Acta orthop. belg. 42, 98–108 (1976).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartz, S., Bennett, M. & Carrier, D. Wing bone stresses in free flying bats and the evolution of skeletal design for flight. Nature 359, 726–729 (1992). https://doi.org/10.1038/359726a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359726a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing