Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large anisotropic thermal conductivity in synthetic diamond films

Abstract

AS high-power electronic devices are packed to progressively higher densities, synthetic diamond films are being considered as heat spreaders for the prevention of thermal damage (see ref. 1 for example). Although diamond single crystals are known to have the highest thermal conductivity for any material at room tem-perature (22 W cm−1 K−1 for diamond with natural isotopic abundance, compared with 4 W cm-1 K-1 for copper), the dependence of conductivity on the microstructure of polycrystalline diamond films is not understood. Using a newly developed laser technique2, we have measured thermal conductivity in the experimentally difficult direction perpendicular to the plane of the diamond film. Taken together with earlier in-plane measurements3, this gives a complete description of the local thermal conductivity, showing a significant gradient and anisotropy correlated with the inhomogeneous grain structure. Despite phonon scattering at lattice defects and grain boundaries, we find that the local conductivity near the top growth surface of a synthetic diamond film is, surprisingly, at least as high as that of gem-quality diamond single crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Angus, J. C., Wang, Y. & Sunkara, M. A. Rev. Mater. Sci. 21, 221–226 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Graebner, J. E. et al. J. appl. Phys. 71, 5353–5356 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Graebner, J. E., Jin, S., Kammlott, G. W., Herb, J. A. & Gardinier, C. F. Appl. Phys. Lett. 60, 1576–1578 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Victor, A. C. J. chem. Phys. 36, 1903–1911 (1962).

    Article  ADS  CAS  Google Scholar 

  5. Hoinkis, M. et al. Appl. Phys. Lett. 59, 1870–1871 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Parker, W. J., Jenkins, R. J., Butler, C. P. & Abbott, G. L. J. appl. Phys. 32, 1679–1684 (1961).

    Article  ADS  CAS  Google Scholar 

  7. Vandersande, J. W., Vining, C. B. & Zoltan, A. Electrochem. Soc. Proc. 91–8, 2nd Int. Symp. Diamond Materials, 443–444 (1991).

    Google Scholar 

  8. Anthony, T. R. et al. Phys. Rev. 42, 1104–1111 (1990).

    Article  CAS  Google Scholar 

  9. Berman, R. in The Properties of Diamond (ed. Field, J. E.) Ch. 1 (Academic, London, 1979).

    Google Scholar 

  10. Burgemeister, E. A. Physica B93, 165–179 (1978).

    CAS  Google Scholar 

  11. Slack, G. A. J. phys. Chem. Solids 34, 321–335 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Graebner, J. E., Mucha, J. A., Seibles, L. & Kammlott, G. W. J. appl. Phys. 71, 3143–3146 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Berman, R. Thermal Conduction in Solids (Oxford Univ. Press, Oxford, 1976).

    Google Scholar 

  14. Graebner, J. E. & Herb, J. A. Diamond Films Technol. 1, 155–164 (1992).

    CAS  Google Scholar 

  15. Morelli, D. T., Hartnett, T. M. & Robinson, C. J. Appl. Phys. Lett. 59, 2112–2114 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Hetherington, A. V., Wort, C. J. H. & Southworth, P. J. Mater. Res. 5, 1591–1594 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graebner, J., Jin, S., Kammlott, G. et al. Large anisotropic thermal conductivity in synthetic diamond films. Nature 359, 401–403 (1992). https://doi.org/10.1038/359401a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359401a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing