Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence that Hensen's node is a site of retinoic acid synthesis

Abstract

HENSEN'S node of amniotes, like the Spemann organizer of amphibians, can induce a second body axis when grafted into a host embryo1. The avian node, as well as several midline structures originating from it (notochord, floor plate), can also induce digit pattern duplications when grafted into the chick wing bud2,3. We report here that the equivalent of Hensen's node from mouse is an effective inducer of digits in the chick wing bud. Tissues anterior and posterior to the node also evoke pattern duplications, but with a significantly lower efficiency. The finding that the murine node operates in an avian wing bud suggests that the same inducing agent(s) function in both primary and secondary embryonic fields and have been conserved during vertebrate evolution. Digit pattern duplications are also evoked by local administration of all-trans-retinoic acid4,5. This similarity raises the possibility that Hensen's node is a source of retinoic acid. The mouse node is capable of synthesizing retinoic acid from its biosynthetic precursor all-trans-retinol at a substantially higher rate than either anterior or posterior tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Waddington, C. H. The Epigenetics of Birds (Cambridge Univ. Press, Cambridge, 1952).

    Google Scholar 

  2. Hornbruch, A. & Wolpert, L. J. Embryol. exp. Morph. 94, 257–265 (1986).

    CAS  PubMed  Google Scholar 

  3. Wagner, M., Thaller, C. Jessell, T. & Eichele, G. Nature 345, 819–822 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Tickle, C. et al. Nature 296, 564–566 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Summerbell, D. J. Embryol. exp. Morph. 78, 269–289 (1983).

    CAS  PubMed  Google Scholar 

  6. Eichele, G. Trends Genet. 5, 246–251 (1989).

    Article  CAS  Google Scholar 

  7. Thaller, C. & Eichele, G. Nature 345, 815–819 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Thaller, C. & Eichele, G. Development 103, 473–483 (1988).

    CAS  PubMed  Google Scholar 

  9. Ruberte, E., Dollé, P., Chambon, P. & Morriss-Kay, G. Development 111, 45–60 (1991).

    CAS  PubMed  Google Scholar 

  10. Smith, S. M. & Eichele, G. Development 111, 245–252 (1991).

    CAS  PubMed  Google Scholar 

  11. Rossant, J. et al. Genes Dev. 5, 1333–1344 (1991).

    Article  CAS  Google Scholar 

  12. Durston, A. J. et al. Nature 340, 140–144 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Sive, H. L., Draper, B. W., Harland, R. M. & Weintraub, H. Genes Dev. 4, 932–942 (1990).

    Article  CAS  Google Scholar 

  14. Ruiz i Altaba, A. & Jessell, T. Genes Dev. 5, 175–187 (1991).

    Article  CAS  Google Scholar 

  15. Sharpe, C. R. Neuron 7, 239–247 (1991).

    Article  CAS  Google Scholar 

  16. Kessel, M. & Gruss, P. Cell 67, 89–104 (1991).

    Article  CAS  Google Scholar 

  17. Morriss-Kay, G. M., Murphy, P., Hill, R. E. & Davidson, D. R. EMBO J. 10, 2985–2995 (1991).

    Article  CAS  Google Scholar 

  18. Sundin, O. H. & Eichele, G. Development 114, 841–852 (1992).

    CAS  PubMed  Google Scholar 

  19. Conlon, R. A. & Rossant, J. Development (in the press).

  20. Selleck, M. A. J. & Stern, C. D. Development 112, 615–626 (1991).

    CAS  PubMed  Google Scholar 

  21. Schoenwolf, G. C., Garcia-Martinez, V. & Dias, M. S. Dev. Dynamics 193, 235–248 (1992).

    Article  CAS  Google Scholar 

  22. Lawson, K. A. & Pedersen, R. A. in Post Implantation Development in the Mouse, Ciba Foundation Symp. 165 (eds Chadwick D. J. & Marsh, J.) 3–26 (Wiley, Chichester, 1992).

    Google Scholar 

  23. Stern, C. D. Anat. Embryol. 156, 319–329 (1979).

    Article  CAS  Google Scholar 

  24. Simeone, A. et al. Nature 346, 763–766 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Simeone, A. et al. Mech. Dev. 33, 215–228 (1991).

    Article  CAS  Google Scholar 

  26. Papalopulu, N., Lovell-Badge, R. & Krumlauf, R. Nucleic Acids Res. 19, 5497–5506 (1991).

    Article  CAS  Google Scholar 

  27. Murphy, P. & Hill, R. E. Development 111, 61–74 (1991).

    CAS  PubMed  Google Scholar 

  28. McGinnis W. & Krumlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  29. Jessell, T. M. & Melton, D. A. Cell 68, 257–270 (1992).

    Article  CAS  Google Scholar 

  30. Tickle, C., Summerbell, D. & Wolpert, L. Nature 254, 199–202 (1975).

    Article  ADS  CAS  Google Scholar 

  31. Romijn, H. J. et al. Devl Brain Res. 2, 583–589 (1982).

    Article  Google Scholar 

  32. Labarca, C. & Paigen, K. Analyt. Biochem. 102, 344–352 (1980).

    Article  CAS  Google Scholar 

  33. Gaunt, S. J. & Singh P. B. Trends Genet. 6, 208–212 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, B., Thaller, C. & Eichele, G. Evidence that Hensen's node is a site of retinoic acid synthesis. Nature 359, 237–241 (1992). https://doi.org/10.1038/359237a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359237a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing