Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Friction measurements on phase-separated thin films with a modified atomic force microscope

Abstract

THE study of chemical phase separation in multicomponent thin organic films typically involves the addition of a dye which is selectively more soluble in one of the phases, thereby making it possible to probe the domain structures by fluorescence microscopy1–4. The resolution of this approach is generally limited to tens of micrometres. The atomic force microscope, on the other hand, has recently proved useful for imaging organic thin films down to the atomic scale5–9, but this technique provides details of the overall film topography, rather than the chemical composition. Here we show that the recently developed friction force microscope10–13, which simultaneously measures both the normal and lateral forces on the scanning tip, can be used to image and identify compositional domains with a resolution of 5 Å. Although the topography of the individual domains can be imaged with a standard atomic force microscope, it is the additional information provided by the friction measurement that allows them to be chemically differentiated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Knobler, C. J. Phys.: Condens. Matter 3, S17–S22 (1991).

    ADS  CAS  Google Scholar 

  2. Möbius, D. & Möhald, H. Adv. Mater. 3, 19–24 (1991).

    Article  Google Scholar 

  3. Seul, M. & Sammon, M. J. Phys. Rev. Lett. 64, 1903–1906 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Chi, L. F., Johnston, R. R. & Ringsdorf, H. Langmuir 7, 2323–2329 (1991).

    Article  CAS  Google Scholar 

  5. Binnig, G., Quate, C. F. & Gerber, C. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Meyer, E. et al. Nature 349, 398–400 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Bourdieu, L., Silberzan, P. & Chatenay, D. Phys. Rev. Lett. 67, 2029–2031 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Alves, C., Smith, E. & Porter, M. J. Am. chem. Soc. 114, 1222–1227 (1992).

    Article  CAS  Google Scholar 

  9. Frommer, J. Angew. Chem. 31 (in the press).

  10. Mate, C. M., McClelland, G. M., Erlandsson, R. & Chiang, S. Phys. Rev. Lett. 59, 1942–1945 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Meyer, G. & Amer, N. M. Appl. Phys. Lett. 57, 2089–2091 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Marti, O., Colchero, J. & Mlynek, J. Nanotechnology 1, 141–144 (1990).

    Article  ADS  Google Scholar 

  13. Erlandsson, R. et al. J. Chem. Phys. 89, 5190–5193 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Appl. Phys. Lett. 40, 178–181 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Binnig, G. et al. Europhys. Lett. 3, 1281–1286 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Meyer, E. et al. J. Vac. Sci. Technol. B2, 1329–1332 (1991).

    Article  Google Scholar 

  17. Feenstra, R. M., Stroscio, J. A., Tersoff, J. & Fein, A. P. Phys. Rev. Lett. 58, 1192–1195 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Hamers, R. J., Avouris, Ph. & Bozso, F. J. Vac. Sci. Technol. A6, 508–511 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Behm, R. J. Scanning Tunneling Microscopy and Related Methods (eds Behm, R. J., Garcia, N. & Rohrer, H.) 173–209 (NATO ASI Series, 1990).

    Google Scholar 

  20. Feenstra, R. M. Scanning Tunneling Microscopy and Related Methods (eds Behm, R. J., Garcia, N. & Rohrer, H.) 211–240 (NATO ASI Series, 1990).

    Book  Google Scholar 

  21. Bowden, F. P. & Tabor, D. The Friction and Wear of Solids (Oxford Univ. Press, London, 1950).

    MATH  Google Scholar 

  22. Israelachvili, J. N. & Tabor, D. Wear 24, 386–390 (1973).

    Article  CAS  Google Scholar 

  23. Briscoe, B. J. & Evans, D. C. B. Proc. R. Soc. A380, 389–407 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Murray, R. W. Electroanalytical Chemistry, Vol. 13 (ed. Bard, A. J.) 191–368 (Dekker, Marcel, New York, 1984).

    Google Scholar 

  25. Fujihira, M. Topics in Organic Electrochemistry (eds Fry, A. J. & Britton, W. E.) 255–294 (Plenum, New York, 1986).

    Book  Google Scholar 

  26. Ullman, A. An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly (Academic, New York, 1991).

    Google Scholar 

  27. Naselli, C., Swalen, J. D. & Rabolt, J. F. J. chem. Phys. 90, 3855–3860 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Briscoe, B. & Tabor, D. Interfacial Phenomena in Apolar Media (eds Eicke, H.-F. & Parfitt, G. D.) 327–356 (Dekker, Marcel, New York, 1987).

    Google Scholar 

  29. Meyer, E. et al. Fundamentals of Friction (eds Pollock, M. & Singer, I.) (Kluwer, in the press).

  30. Meyer, E. et al. Ultramicroscopy (in the press).

  31. Barton, S. W. et al. J. chem. Phys. 96, 1343–1351 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Hardy, W. B. Proc. R. Soc. A88, 313–315 (1913).

    Article  ADS  CAS  Google Scholar 

  33. Rabinowitz, E. & Tabor, D. Proc. R. Soc. A208, 455–474 (1951).

    ADS  Google Scholar 

  34. Hsu, S. L. et al. Macromolecules 23, 4565 (1990).

    Article  ADS  CAS  Google Scholar 

  35. Bates, T. W. & Stockmayer, W. H. Macromolecules 1, 12 (1968).

    Article  ADS  CAS  Google Scholar 

  36. Meyer, E. et al. Thin Solid Films (in the press).

  37. Umemura, J. et al. Thin Solid Films 178, 281 (1989).

    Article  ADS  CAS  Google Scholar 

  38. Nishiyama, K., Kurihara, M. & Fujihira, M. Thin Solid Films 179, 477 (1989).

    Article  ADS  CAS  Google Scholar 

  39. Schreck, M. et al. Thin Solid Films 175, 95–105 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overney, R., Meyer, E., Frommer, J. et al. Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature 359, 133–135 (1992). https://doi.org/10.1038/359133a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359133a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing