Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of vertebrate left–right asymmetries by extracellular matrix

Abstract

THE vertebrate body is organized along three geometric axes: anterior–posterior, dorsal–ventral and left–right. Left–right axis formation, displayed in heart and gut development, is the least understood, even though it has been studied for many years1–4. In Xenopus laevis gastrulae, a fibronectin-rich extracellular matrix is deposited on the basal surface of ectoderm cells5,6 over which cardiac and visceral primordia move during development. Here I report experiments in which localized perturbation of a small patch of extracellular matrix by microsurgery was correlated with localized randomization of left–right asymmetries. Global perturbation of the extracellular matrix by microinjection of Arg-Gly-Asp peptides or heparinase into the blastocoel resulted in global randomization of left-right asymmetries. From these observations, I suggest that left–right axial information is contained in the extracellular matrix early in development and is independently transmitted to cardiac and visceral primordia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oppenheimer, J. M. Am. Zool. 15, 867–879 (1974).

    Article  Google Scholar 

  2. Brown, N. A. & Wolpert, L. Development 109, 1–9 (1990).

    CAS  PubMed  Google Scholar 

  3. Wood, W. B. Nature 349, 536–538 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Galloway, J. Nature 346, 223–224 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Lee, G., Hynes, R. & Kirschner, M. Cell 36, 729–740 (1984).

    Article  CAS  Google Scholar 

  6. Keller, R. & Winklbauer, R. in Seminars in Developmental Biology Vol. 1 (ed. Bronner-Frasier, M. A.) 25–33 (Saunders, Philadelphia, 1990).

    Google Scholar 

  7. Spemann, H. Verh. dt. zool. Ges. 16, 195–202 (1906).

    Google Scholar 

  8. von Woellwarth, C. Roux Arch. 144, 178–256 (1950).

    Article  Google Scholar 

  9. Takaya, H. Annot. Zool. Japon. 26, 38–42 (1953).

    Google Scholar 

  10. Wehrmaker, A. Roux Arch. 163, 1–32 (1969).

    Article  Google Scholar 

  11. Keller, R. E. Devl Biol. 42, 222–241 (1975).

    Article  CAS  Google Scholar 

  12. Keller, R. E. Devl Biol 51, 118–137 (1976).

    Article  CAS  Google Scholar 

  13. Yost, H. J. Development 110, 865–874 (1990).

    CAS  PubMed  Google Scholar 

  14. Brickman, M. J. Cell Biol. 111, 484 (1990).

    Google Scholar 

  15. Fey, J. & Hausen, P. Differentiation 42, 144–152 (1990).

    Article  CAS  Google Scholar 

  16. Clark, R. A. F. Curr. Opin. Cell Biol. 1, 1000–1008 (1989).

    Article  CAS  Google Scholar 

  17. Ruoslahti, E. & Pierschbacher, M. D. Science 238, 491–497 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Boucat, J. C. et al. J. Cell Biol. 99, 1822–1830 (1984).

    Article  Google Scholar 

  19. Linask, K. K. & Lash, J. W. Devl Biol. 129, 315–323 (1988).

    Article  CAS  Google Scholar 

  20. Brueckner, M., D'Dustachio, P. & Horwich, A. L. Proc. natn. Acad. Sci. U.S.A. 86, 5035–5038 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Yost, H. J. in Biological Asymmetry and Handedness (eds Bock, G. R. & Marsh, J.) 165–181 (Wiley, Chichester, 1991).

    Google Scholar 

  22. Winklbauer, R. & Nagel, M. Devl Biol. 148, 573–589 (1991).

    Article  CAS  Google Scholar 

  23. Flaumenhaft, R. & Rifkin, D. B. Curr. Opin. Cell Biol. 3, 817–823 (1991).

    Article  CAS  Google Scholar 

  24. Gerhart, J., et al. Development 105 (suppl.) 37–51 (1989).

    Google Scholar 

  25. Keller, R., Danilchik, M., Gimlich, R. & Shih, J. J. Embryol. exp. Morph. 89 (suppl.), 185–209 (1985).

    PubMed  Google Scholar 

  26. Nieuwkoop, P. D. & Faber, J. Normal table of Xenopus laevis Daudin (North-Holland, Amsterdam, 1967).

    Google Scholar 

  27. Hemmati Brivanlou, A. & Harland, R. M. Development 106, 611–617 (1989).

    Google Scholar 

  28. Schefler, W. C. Statistics for the Biological Sciences 1–231 (Addison-Wesley, Reading, Massachusetts, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yost, H. Regulation of vertebrate left–right asymmetries by extracellular matrix. Nature 357, 158–161 (1992). https://doi.org/10.1038/357158a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357158a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing