Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface particle transport mechanism independent of myosin II in Dictyostelium

Abstract

CELLULAR locomotion could be driven by the rearward transport of membrane-bound particles observed on motile fibroblasts1, keratinocytes2 and neuronal growth cones3. A force propelling free surface particles backwards could move the cell forwards if the particles were anchored to a rigid substratum. During capping, myosin II ('double-headed' myosin) draws crosslinked membrane proteins to the rear of a cell. The mhcA mutant of the amoebal stage of the slime mould Dictyostelium discoideum, in which the myosin II gene has been deleted4, cannot cap surface particles but can crawl along the substratum5,6. Thus, the mechanism driving capping is not essential for locomotion. We show here that the null mutant is capable of a different type of active rearward transport, independent of myosin II and distinct from capping. The transported particles on mhcA cells follow parallel paths. In the wild-type Ax2 strain, myosin II causes particles to converge towards a focal point and significantly increases the velocity of transport behind the leading edge of the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fisher, G. W., Conrad, P. A., DeBiasio, R. L. & Taylor, D. L. Cell Motil. Cytoskel. 11, 235–247 (1988).

    Article  CAS  Google Scholar 

  2. Kucik, D. F., Elson, E. L. & Sheetz, M. P. J. Cell Biol. 111, 1617–1622 (1990).

    Article  CAS  Google Scholar 

  3. Forscher, P. & Smith, S. J. J. Cell Biol. 107, 1505–1516 (1988).

    Article  CAS  Google Scholar 

  4. Manstein. D. J., Titus, M. A., De Lozanne, A. & Spudich, J. A. EMBO J. 8, 923–932 (1989).

    Article  CAS  Google Scholar 

  5. Pasternak, C., Spudich, J. A. & Elson, E. L Nature 341, 549–551 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Wessels, D. et al. Devl Biol. 128, 164–177 (1988).

    Article  CAS  Google Scholar 

  7. Molday, R, Jaffe, R. & McMahon, D. J. Cell Biol. 71, 314–322 (1976).

    Article  CAS  Google Scholar 

  8. Hellio, R, & Ryter, A. J. Cell Sci. 79, 327–342 (1985).

    CAS  PubMed  Google Scholar 

  9. Bray, D. & White, J. G. Science 239, 883–888 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Yumura, S., Mori, H. & Fukui, Y. J. Cell Biol. 99, 894–899 (1984).

    Article  CAS  Google Scholar 

  11. Pollard, T. D., Doberstein, S. K. & Zot, H. G. A. Rev. Physiol. 53, 653–681 (1991).

    Article  CAS  Google Scholar 

  12. Fukui, Y., Lynch, T. J., Brzeska, H. & Korn, E. D. Nature 341, 328–331 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Jung, G. & Hammer, J. A. J. Cell Biol. 110, 1955–1964 (1990).

    Article  CAS  Google Scholar 

  14. Wessels, D., Murray, J., Jung, G., Hammer, J. A. & Soil, D. R. Cell Motil. Cytoskel. 20, 301–315 (1991).

    Article  CAS  Google Scholar 

  15. Theriot, J. A & Mitchison, T. J. Nature 352, 126–131 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Kucik, D. F., Elson, E. L. & Sheetz, M. P. Nature 340, 315–317 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Sheetz, M. P., Turney, S., Qian, H. & Elson, E. L. Nature 340, 284–288 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Carboni, J. M. & Condeelis, J. S. J. Cell Biol. 100, 1884–1893 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jay, P., Elson, E. Surface particle transport mechanism independent of myosin II in Dictyostelium. Nature 356, 438–440 (1992). https://doi.org/10.1038/356438a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356438a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing