Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Excitation mechanism of the mesospheric sodium nightglow

Abstract

THE atmospheric sodium nightglow and luminescence of meteor trails, both of which occur at mesospheric altitudes of 85–95 km, are emitted by sodium atoms in the excited 2P state. The Chapman mechanism1–8 attributes these to the reaction between NaO and oxygen atoms, requiring an unusually high rate of formation of excited Na*(2P) relative to ground-state Na(2S) atoms from the NaO + O reaction. But laboratory studies of the kinetics9 show a very low Na*(2P) formation rate (branching ratio f< 0.01). NaO is itself formed by the reaction of sodium atoms with ozone. Molecular-beam experiments10 and photoelectron spectroscopy11 have shown recently that this reaction yields largely excited-state (2Σ+) NaO rather than the ground-state (2Π) species studied in the NaO + O kinetics experiments9, thereby suggesting a resolution of the apparent discrepancy with the Chapman mechanism. By extending the symmetry correlation between reactant and product electronic states considered by Bates and Ohja6, we show here that reaction of excited-state NaO with oxygen atoms does indeed yield branching ratios consistent with the Chapman mechanism. We infer that the NaO + O potential-energy surfaces leading to excited Na*(2P) atoms involve doublet rather than quartet spin configurations, and the branching ratio f is close to zero for ground-state NaO but 2/3 for excited-state NaO. If confirmed experimentally, this finding may enable the sodium nightglow to be used as a quantitative measure of mesospheric ozone concentrations5,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chapman, S. Astrophys. J. 90, 309–316 (1939).

    Article  ADS  CAS  Google Scholar 

  2. Hunten, D. M. in The Radiating Atmosphere (ed. McCormac, B. M.) 3–16 (Reidel, Dordrecht, 1971).

    Book  Google Scholar 

  3. Kolb, C. E. & Elgin, J. B. Nature 263, 488–489 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Clemesha, B. R., Kirchhoff, V. W. J. H. & Simonich, D. M. J. geophys. Res. 83, 2499–2503 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Kirchhoff, V. W. J. H., Clemesha, B. R. & Simonich, D. M. J. geophys. Res. 84, 1323–1327 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Bates, D. R. & Ojha, P. C. Nature 286, 790–791 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Swider, W. J. geophys. Res. 91, 6742–6746 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Newman, A. L. J. geophys. Res. 93, 4067–4075 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Plane, J. M. C. & Husain, D. J. chem. Soc. Faraday Trans. II 82, 2047–2052 (1986).

    Article  CAS  Google Scholar 

  10. Shi, X., Herschbach, D. R., Worsnop, D. R. & Kolb, C. E. J. phys. Chem. (in the press).

  11. Dyke, J. M., Shaw, A. M. & Wright, T. G. in Gas-Phase Metal Reactions (ed. Fontijn, A.) (Elsevier, Amsterdam, in the press).

  12. Ager, J. W. III, Talcott, C. L. & Howard, C. J. J. chem. Phys. 85, 5584–5592 (1986).

    Article  ADS  Google Scholar 

  13. Worsnop, D. R., Zahniser, M. S. & Kolb, C. E. J. phys. Chem. 95, 3960–3964 (1991).

    Article  CAS  Google Scholar 

  14. Gislason, E. A. in Alkali Vapors (eds Davidovits, P. & McFaddan, D. L.) 415–440 (Academic, New York, 1979).

    Book  Google Scholar 

  15. Chikashi, Y., Masahara, F. & Hirota, E. J. chem. Phys. 90, 3033–3037 (1989).

    Article  Google Scholar 

  16. Offerman, D., Friedrich, V., Ross, P. & von Zahn, U. Planet. Space Sci. 29, 747–764 (1981).

    Article  ADS  Google Scholar 

  17. Sharp, W. E. Planet. Space Sci. 39, 617–626 (1991).

    Article  ADS  Google Scholar 

  18. Herzberg, G. Electronic States of Polyatomic Molecules, 574–576 (Van Nostrand, Princeton, 1966).

    Google Scholar 

  19. Langhoff, S. R., Partridge, H. & Bauschlicher, C. W. Jr Chem. Phys. 153, 1–12 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Alexander, M. H. J. chem. Phys. 69, 3502–3517 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Fukui, K. Angew. Chem. int. Ed. Engl. 21, 801–809 (1982).

    Article  Google Scholar 

  22. Herschbach, D. R. Angew. Chem. int. Ed. Engl. 26, 1221–1243 (1987).

    Article  Google Scholar 

  23. Vaughan, G. Nature 296, 133–135 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herschbach, D., Kolb, C., Worsnop, D. et al. Excitation mechanism of the mesospheric sodium nightglow. Nature 356, 414–416 (1992). https://doi.org/10.1038/356414a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356414a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing