Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A linear free energy relationship for crystalline solids and aqueous ions

Abstract

QUANTITATIVE chemical modelling of geochemical, environmental and industrial processes is often severely limited because of large gaps in experimentally derived thermodynamic databases for Gibbs free energies of crystalline solids and aqueous ions. Methods proposed previously for estimation of the free energies or enthalpies of formation of crystalline solids1–9 are subject to large uncertainties, typically greater than ±5–10 kcal mol−1. Here we present an empirically based linear free energy equation10 applicable to cations of any charge, radius or chemical type, which allows estimates of the free energies of solids with uncertainties of less than ±1 kcal mol−1. Our equation is analogous to the linear free energy relations of Hammett and others11,12 for aqueous organic reactions, but applies instead to crystalline solids. We apply our equation to experimentally derived standard Gibbs free energies of formation of isostructural families of divalent oxides, hydroxides, carbonates, fluorides, chlorides and sulphates. This new level of accuracy for predicting free energies of crystalline solids opens up opportunities for chemical modelling of many processes not previously amenable to thermodynamic analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tardy, Y. & Garrels, R. M. Geochim. cosmochim. Acta 40, 1051–1056 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Tardy, Y. & Garrels, R. M. Geochim. cosmochim. Acta 41, 87–92 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Helgeson, H. C., Delaney, J. M., Nesbitt, H. W. & Bird, D. C. Am. J. Sci. A278, 1–229 (1978).

    Article  Google Scholar 

  4. Viellard, P. H. & Tardy, Y. Am. J. Sci. 288, 997–1040 (1988).

    Article  ADS  Google Scholar 

  5. Hazen, R. M. Am. J. Sci. 288A, 242–269 (1988).

    Google Scholar 

  6. Essington, M. E. Soil. Sci. Soc. Am. J. 52, 1574–1579 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Chermak, J. A. & Rimstidt, J. D. Am. Miner. 74, 1023–1031 (1989).

    CAS  Google Scholar 

  8. Chermak, J. A. & Rimstidt, J. D. Am. Miner. 75, 1376–1380 (1990).

    CAS  Google Scholar 

  9. Zugev, V. V. Geochem. Int. 2, 45–51 (1989).

    Google Scholar 

  10. Sverjensky, D. A. Geol. Soc. Am. Ann. Meeting Abstr. 23, A212 (1991).

    Google Scholar 

  11. Wells, P. R. Linear Free Energy Relationships (Academic, London, 1968).

    Google Scholar 

  12. Exner, O. Correlation Analysis of Chemical Data (Plenum, New York, 1988).

    Google Scholar 

  13. Sverjensky, D. A. Geochim. cosmochim. Acta 64, 853–864 (1985).

    Article  ADS  Google Scholar 

  14. Shannon, R. D. & Prewitt, C. T. Acta Crystallogr. B25, 925–946 (1969).

    Article  CAS  Google Scholar 

  15. Shock, E. L. & Helgeson, H. C. Geochim. cosmochim. Acta 52, 2009–2036 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Wagman, D. D. et al. J. Phys. Chem. Ref. Data Vol. 11, Suppl. 2 (1982).

  17. Glushko, V. P. Thermal Constants of Substances (Viniti, Moscow, 1965–1981).

    Google Scholar 

  18. Veizer, J. Reviews in Mineralogy, Vol. 11, 265–300 (Mineralogical Society of America, Chelsea, Michigan, 1983).

    Google Scholar 

  19. Mucci, A. & Morse, J. W. Aquat. Sci. 3, 217–254 (1990).

    CAS  Google Scholar 

  20. Sverjensky, D. A. Geochim. cosmochim. Acta 48, 1127–1134 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Mann, A. W. & Deutscher, R. L. Econ. Geol. 73, 1724–1737 (1978).

    Article  CAS  Google Scholar 

  22. Cox, J. D., Wagman, D. D. & Medvedev, V. A. CODATA Key Values for Thermodynamics (Hemisphere, New York, 1989).

    Google Scholar 

  23. Shannon, R. D. Acta Cryst. A32, 751–767 (1976).

    Article  Google Scholar 

  24. Shock, E. L. & Helgeson, H. C. Geochim. cosmochim. Acta 53, 215–216 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Mah, A. D. US Bureau of Mines Rep. Invest. 6171 (1963).

  26. Busenberg, E. & Plummer, L. N. Geochim. cosmochim. Acta 50, 2225–2234 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Berman, R. G. J. Petrol. 29, 445–522 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Garvin, D., Parker, V. B. & White, H. L. Jr CODATA Thermodynamic Tables—Selections for Some Compounds of Calcium and Related Mixtures: A Prototype Set of Tables (Hemisphere, New York, 1987).

    Google Scholar 

  29. Baes, C. F. & Mesmer, R. E. The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  30. Plummer, L. N. & Busenberg, E. Geochim. cosmochim. Acta 46, 1011–1040 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Robie, R. A., Haselton, H. T. Jr & Hemingway, B. S. Am. Miner. 69, 349–357 (1984).

    CAS  Google Scholar 

  32. Langmuir, D. US Geol. Survey Prof. Pap. 650-B, B180–184 (1969).

  33. Busenberg, E., Plummer, L. N. & Parker, V. B. Geochim. cosmochim. Acta 48, 2021–2036 (1984).

    Article  ADS  CAS  Google Scholar 

  34. Robie, R. A., Hemingway, B, S. & Fisher, J. R. US Geol. Survey Bull. no. 1452 (1978).

  35. Nordstrom, D. K. et al. Am. chem. Soc. Symp. Ser., Ch. 31, 398–413 (1990).

  36. Langmuir, D. & Riese, A. C. Geochim. cosmochim. Acta 49, 1593–1602 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sverjensky, D., Molling, P. A linear free energy relationship for crystalline solids and aqueous ions. Nature 356, 231–234 (1992). https://doi.org/10.1038/356231a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356231a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing