Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photochemical bromine production implicated in Arctic boundary-layer ozone depletion

Abstract

RECENT measurements1–7 in the Arctic have revealed episodic destruction of boundary-layer ozone from 30–40 parts per 109 by volume (p.p.b.v.) to undetectable levels on a timescale of less than a day, during periods when the boundary layer is very stable. The ozone destruction begins at polar sunrise, continues for the months of March and April, and is strongly associated with levels of filterable bromine which are much greater than during the rest of the year. Here we suggest that sea-salt Br reaches high concentrations in the snow pack during the long polar night, and is evolved into the atmosphere as Br2at polar sunrise. Ordinarily, gas-phase photochemistry would convert Br2 to HBr or brominated organic compounds with consequently little destruction of boundary-layer ozone. In view of several laboratory experiments8–11, and by analogy with the marine boundary layer12, we propose that the HBr and brominated organic compounds will be scavenged by the ambient aerosols and ice crystals, and that these heterogeneous reactions release Br2 back to the atmosphere. We argue that this cycling of bromine between the aerosol and the gas phase should maintain sufficiently high levels of Br atoms and BrO radicals to destroy ozone, in agreement with observations1–7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J. & Rasmussen, R. A. Nature 334, 138–141 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Barrie, L. A., den Hartog, G., Bottenheim, J. W. & Landsberger, S. J. atmos. Chem. 9, 101–127 (1989).

    Article  CAS  Google Scholar 

  3. Leaitch, W. R., Hoff, R. M. & McPherson, J. I. J. atmos. Chem. 9, 187–211 (1989).

    Article  CAS  Google Scholar 

  4. Mickle, R. E., Bottenheim, J. W., Leaitch, W. R. & Evans, W. F. J. Atmos. Envir. 23, 2443–2449 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Oltmans, S. J. et al. Atmos. Envir. 23, 2431–2441 (1989).

    Article  CAS  Google Scholar 

  6. Sturges, W. T. et al. Atmos. Envir. (submitted).

  7. Bottenheim, J. W. et al. J. geophys. Res. 95, 18555–18568 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Power, J. F., Sharma, D. K., Langford, C. H., Bonneau, R. & Joussot-Dubien, J. in Photochemistry of Environmental Aquatic Systems (ed. Zika, R.) 157–173 (1987).

    Book  Google Scholar 

  9. Carey, J. H. & Langford, C. H. Can. J. Chem. 53, 2436–2440 (1975).

    Article  CAS  Google Scholar 

  10. Behnke, W. & Zetzsch, C. in Ozone in the Atmosphere (eds Bojkov. R. D. & Fabian, P.) 519–523 (1989).

    Google Scholar 

  11. Zetzsch, C., Pfahler, G. & Behnke, W. J. Aerosol Sci. 19, 1203–1206 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Rancher, J. & Kritz, M. A. J. geophys. Res. 85, 5581–5587 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Finlayson-Pitts, B. J., Livingston, F. E. & Berko, H. N. Nature 343, 622–625 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Patterson, D. E. & Husar, R. B. Atmos. Envir. 15, 1479–1482 (1981).

    Article  Google Scholar 

  15. Barrie, L. A. Atmos. Envir. 20, 643–663 (1986).

    Article  CAS  Google Scholar 

  16. Barrie, L. A. & Barrie, M. J. J. atmos. Chem. 11, 211–226 (1990).

    Article  CAS  Google Scholar 

  17. Keene, W. C. et al. Global biogeochem. Cycles 4, 407–430 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Duce, R. A., Winchester, J. W. & Van Nahl, T. W. J. geophys. Res. 70, 1775–1799 (1965).

    Article  ADS  CAS  Google Scholar 

  19. Gloersen, P. & Campbell, W. J. Nature 352, 33–36 (1991).

    Article  ADS  Google Scholar 

  20. Koerner, R. M. in Polar Bridge, Snow Chemistry Report Appendix E (Weber, G. R., Dexter, L., Holloway, C. & Buxton, M.) (Key Porter, Toronto, 1990).

    Google Scholar 

  21. Yarwood, G., Peng, N. & Niki, H. J. phys. Chem. (in the press).

  22. Kieser, B. N., Bottenheim, J. W., Niki, H. & Sideris, T. Atmos. Envir. (submitted).

  23. Berg, W. W., Sperry, P. D., Rahn, A. & Gladney, E. S. J. geophys. Res. 88, 6719–6736 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConnell, J., Henderson, G., Barrie, L. et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion. Nature 355, 150–152 (1992). https://doi.org/10.1038/355150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing