Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Manufacturable low-noise SQUIDs operating in liquid nitrogen

Abstract

THE superconducting quantum interference device (SQUID) holds promise for a wide range of applications, including the measurement of magnetic fields generated by the brain and heart, detection of tiny cracks and corrosion currents, and exploration of oil and mineral deposits. Currently available SQUIDs rely on low-transition-temperature (low- Tc) superconductors, and must therefore be refrigerated to liquid-helium temperature (4.2 K). This difficult cryogenic requirement has presented a barrier to the widespread implementation of SQUID technology. We report here on the development of a high-Tc d.c. SQUID with a noise level in liquid nitrogen (77 K) that is a significant improvement, at frequencies of practical interest, for SQUIDs produced by a manufacturable fabrication process1,2. The energy sensitivity of 1.6 x 10-29J Hz-1 at 10 Hz is comparable to the best previously reported3 for any high-Tc SQUID at 77 K. These high-Tc SQUIDs are sensitive enough for many of the applications presently possible only with liquid helium devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miklich, A. H. et al. Appl. Phys. Lett. 59, 988–990 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Miklich, A. H. et al. Nature 352, 482–483 (1991).

    Article  ADS  Google Scholar 

  3. Koch, R. G., Gallagher, W. J., Bumble, B. & Lee, W. Y. Appl. Phys. Lett. 54, 951–953 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Gross, R., Chaudhari, P., Kawasaki, M., Ketchen, M. B. & Gupta, A. Appl. Phys. Lett. 57, 727–729 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Kawasaki, M., Chaudhari, P., Newman, T. H. & Gupta, A. Appl. Phys. Lett. 58, 2555–2557 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Irie, A. et al. IEEE Trans. Magn. 27, 3032–3035 (1991).

    Article  ADS  Google Scholar 

  7. Enpuku, K. et al. Jap. J. appl. Phys. 30, L1121–1124 (1991).

    Article  CAS  Google Scholar 

  8. Dilorio, M. S., Yoshizumi, S., Yang, K.-Y., Zhang, J. & Maung, M. Appl. Phys. Lett. 58, 2552–2554 (1991).

    Article  ADS  Google Scholar 

  9. de Gennes, P. G. Rev. mod. Phys. 36, 225–237 (1964).

    Article  ADS  CAS  Google Scholar 

  10. Clarke, J. IEEE Trans. Electron Dev. ED-27, 1896–1908 (1980).

    Article  ADS  Google Scholar 

  11. Tesche, C. D. & Clarke, J. J. low-Temp. Phys. 29, 301–331 (1977).

    Article  ADS  Google Scholar 

  12. Bruines, J. J. P., de Waal, V. J. & Mooij, J. E. J. low-Temp. Phys. 46, 383–386 (1982).

    Article  ADS  Google Scholar 

  13. Oh, B., Koch, R. H., Gallagher, W. J., Robertazzi, R. P. & Eidelloth, W. Appl. Phys. Lett. 59, 123–125 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Ryhänen, T., Seppä, H., Ilmoniemi, R. & Knuutila, J. J. low Temp. Phys. 76, 287–386 (1989).

    Article  ADS  Google Scholar 

  15. Gross, R., Chaudhari, P., Kawasaki, M., Ketchen, M. B. & Gupta, A. IEEE Trans. Magn. 27, 2565–2568 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Ferrari, M. J. et al. Nature 341, 723–725 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Koch, R. H. et al. J. low Temp. Phys. 51, 207–224 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilorio, M., Yoshizumi, S., Maung, M. et al. Manufacturable low-noise SQUIDs operating in liquid nitrogen. Nature 354, 513–515 (1991). https://doi.org/10.1038/354513a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354513a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing