Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cyclic GMP-activated channel in dissociated cells of the chick pineal gland

Abstract

PHOTOTRANSDUCTION in the vertebrate retina is dependent in part on a cyclic GMP-activated ionic channel in the plasma membrane of rods and cones1,2. But other vertebrate cells are also photosensitive. Cells of the chick pineal gland have a photosensitive circadian rhythm in melatonin secretion that persists in dissociated cell culture3,4. Exposure to light causes inhibition of melatonin secretion, and entrainment of the intrinsic circadian oscillator5,6. Chick pinealocytes express several 'retinal' proteins, including arrestin7, transducin8 and a protein similar to the visual pigment rhodopsin9. Pinealocytes of lower vertebrates display hyperpolarizing responses to brief pulses of light10,11. Thus it is possible that some of the mechanisms of phototransduction are similar in retinal and pineal photoreceptors. We report here the first recordings of cyclic GMP-activated channels in an extraretinal photoreceptor. Application of GMP, but not cyclic AMP, to excised inside-out patches caused activation of a 15–25 pS cationic channel. These channels may be essential for phototransduction in the chick pineal gland.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kaup, U. B., Hanke, W., Simmoteit, R. & Luhring, H. Cold Spring Harb. Symp. quant. Biol. 43 407–415 (1988).

    Article  Google Scholar 

  2. Yau, K-W. & Baylor, D. A. A. Rev. Neurosci. 12, 287–327 (1989).

    Article  Google Scholar 

  3. Robertson, L. M. & Takahashi, J. S. J. Neurosci. 8, 12–21 (1988).

    Article  CAS  Google Scholar 

  4. Zatz, M., Mullen, D. A. & Moskal, J. P. Brain Res. 438, 199–215 (1988).

    Article  CAS  Google Scholar 

  5. Robertson, L. M. & Takahashi, J. S. J. Neurosci. 8, 21–32 (1988).

    Google Scholar 

  6. Zatz, M. & Mullen, D. A. Brain Res. 453, 63–71 (1988).

    Article  CAS  Google Scholar 

  7. Collin, J. P. et al. Neuroscience 19, 657–668 (1986).

    Article  CAS  Google Scholar 

  8. van Veen, T. et al. Proc. natn. Acad. Sci. U.S.A. 83, 912–917 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Deguchi, T. Nature 290, 706–709 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Pu, A. & Dowling, J. E. J. Neurophysiol. 46, 1018–1038 (1981).

    Article  CAS  Google Scholar 

  11. Tomotsu, S. & Morita, Y. J. comp. Physiol. 159, 1–5 (1986).

    Article  Google Scholar 

  12. Matthews, G. & Watanabe, S. I. J. Physiol., Lond. 403, 389–405 (1988).

    Article  CAS  Google Scholar 

  13. Haynes, L. W. & Yau, K.-W. J. Physiol., Lond. 429, 451–481 (1990).

    Article  CAS  Google Scholar 

  14. Menini, A. J. Physiol., Lond. 424, 167–185 (1990).

    Article  CAS  Google Scholar 

  15. Matthews, G. J. Physiol., Lond. 403, 389–405 (1988).

    Article  CAS  Google Scholar 

  16. Nakamura, T. & Gold, G. H. Nature 325, 422–424 (1987).

    Article  ADS  Google Scholar 

  17. Dhallan, R. S., Yau, K.-W., Schrader, K. A. & Reed, R. R. Nature 347, 184–187 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Takahashi, J. S. et al. Hormone Res. 45, 279–352 (1989).

    CAS  Google Scholar 

  19. Harrison, N. & Zatz, M. J. Neurosci. 9, 2462–2467 (1989).

    Article  CAS  Google Scholar 

  20. Wainwright, S. D. & Wainwright, L. K. J. Neorochem. 413, 358–371 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dryer, S., Henderson, D. A cyclic GMP-activated channel in dissociated cells of the chick pineal gland. Nature 353, 756–758 (1991). https://doi.org/10.1038/353756a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353756a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing