Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotope evidence for the involvement of recycled sediments in diamond formation

Abstract

DIAMONDS, as chemically robust containers of material from the mantle, have provided important information regarding the evolution of the Earth's interior1; yet despite much effort2–9, the origins of diamonds themselves have remained controversial10–13. Sulphur isotope ratios measured in most mantle or meteoritic samples exhibit minimal deviation from the meteoritic standard, whereas the ratios in crustal materials deviate by as much as ±70‰(ref. 14): for this reason, isotopic studies of sulphide mineral inclusions in diamonds and mantle material are an attractive means of investigating the possible role of crust–mantle interaction in the formation of diamonds15. Recent ion microprobe studies have found departures from mantle values in the sulphur isotope compositions of individual diamond inclusions16 and some mantle rocks17, which would be consistent with subduction of altered ocean crust into the region of diamond growth. Here we present new sulphur and lead isotope data from diamond sulphide inclusions, which suggest that sedimentary material might also be subducted into the mantle and that the crustal recycling process has been operative for at least 1,000 million years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kesson, S. E. & Ringwood, A. E. Chem. Geol. 78, 97–118 (1989).

    Article  ADS  CAS  Google Scholar 

  2. MacGregor, I. D. & Manton, W. I. J. geophys. Res. 91, 14063–14079 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Kramers, J. D. Earth planet. Sci. Lett. 42, 58–70 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. Nature 310, 198–202 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Richardson, S. H., Erlank, A. J. & Hart, S. R. Earth planet. Sci. Lett. 75, 116–128 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Richardson, S. H., Erlank, A. J., Harris, J. W. & Hart, S. R. Nature 346, 54–56 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Burgess, R., Turner, G., Laurenzi, M. & Harris, J. W. Earth planet Sci. Lett. 94, 22–28 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Turner, G., Burgess, R. & Bannon, M. Nature 344, 653–655 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Ballhaus, C., Berry, R. F. & Green, D. H. Nature 348, 437–440 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Deines, P., Harris, J. W. & Gurney, J. J. Geochim. cosmochim. Acta 51, 1227–1243 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Deines, P. Geochim. cosmochim. Acta 44, 943–961 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Deines, P. & Wickman, F. E. Geochim. cosmochim. Acta 39, 547–557 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Deines, P., Harris, J. W., Robinson, D. N., Gurney, J. J. & Shee, S. R. Geochim. cosmochim. Acta 55, 515–524 (1990).

    Article  ADS  Google Scholar 

  14. Ohmoto, H. & Rye, R. O. in Geochemistry of Hydrothermal Ore Deposits 2nd Edn. (ed. Barnes, H. L.) 509–567 (Wiley, New York, 1979).

    Google Scholar 

  15. Tsai, H., Shieh, Y. & Meyer, H. O. in The Mantle Sample: Inclusions in Kimberlites and Other Volcanics Vol. 2 (eds Boyd, F. R. & Meyer, H. O. A.) 87–103 (American Geophysical Union, Washington, DC, 1979).

    Book  Google Scholar 

  16. Chaussidon, M., Allbarede, F. & Sheppard, S. M. F. Nature 330, 242–244 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Chaussidon, M., Allbarede, F. & Sheppard, S. M. F. Earth planet. Sci. Lett. 92, 144–156 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Eldridge, C. S., Compston, W., Williams, I. S. Walshe, J. L. & Both, R. A. Int. J. Mass Spectrom. Ion Proc. 54, 40–59 (1987).

    Google Scholar 

  19. Eldridge, C. S., Compston, W., Williams, I. S. & Walshe, J. L. US Geol. Surv. Bull. 1890, 163–173 (1989).

  20. Sobolev, N. V. in Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration Geology Dept and University Extension Univ. of Western Australia Publ. No. 8 (eds Glover, J. E. & Harris, P. G.) 275–287 (1984).

    Google Scholar 

  21. Compston, W., Williams, I. S. & Meyer, C. J. geophys. Res. 89, B525–B534 (1984).

    Article  Google Scholar 

  22. Williams, I. S. & Claesson, S. Contrib. Mineral. Petrol. 9, 205–217 (1987).

    Article  ADS  Google Scholar 

  23. Shimizu, N. & Hart, S. R. J. appl. Phys. 53, 1303–1311 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Cumming, G. L. & Richards, J. R. Earth planet Sci. Lett. 28, 155–171 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Sakai, H., Des Marais, D. J., Ueda, A. & Moore, J. G. Geochim. cosmochim. Acta 48, 2433–2441 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Sobolev, N. V. in Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration Geology Dept and University Extension Univ. of Western Australia Publ. No. 8 (eds Glover, J. E. & Harris, P. G.) 213–226 (1984).

    Google Scholar 

  27. Jaques, A. L. et al. in Kimberlites and Related Rocks, 2, Their Mantle/Crust Setting, Diamonds, and Diamond Exploration, Proc. 4th Int. Kimberlite Conf., 966–989 (Blackwell, London, 1989).

    Google Scholar 

  28. Helmstaedt, H. & Gurney, J. J. in Kimberlites and Related Rocks, 1, Proc. 3rd Int. Kimberlite Conf. (ed. Kornprobst, J.) 425–434 (Elsevier, Amsterdam, 1984).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldridge, C., Compston, W., Williams, I. et al. Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 353, 649–653 (1991). https://doi.org/10.1038/353649a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353649a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing