Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli

Abstract

WHEN present in single-stranded DNA, palindromic or quasi-palindromic sequences have the potential to form complex secondary structures, including hairpins, which may facilitate inter-strand misalignment of direct repeats and be responsible for diverse types of replication-based mutations, including deletions, additions, frameshifts and duplications1–5. In regions of palindromic symmetry, specific deletion events may involve the formation of a hairpin or other DNA secondary structures which can stabilize the misalignment of direct repeats1,2. One model suggests that these deletions occur during DNA replication by slippage of the template strand and misalignment with the progeny strand6,7. The concurrent DNA replication model, involving an asymmetric dimeric DNA polymerase III complex which replicates the leading and lagging strands8, has significant implications for mutagenesis. The intermittent looping of the lagging strand template, and the fact that the lagging strand template may contain a region of single-stranded DNA the length of an Okazaki fragment, provides an opportunity for DNA secondary-structure formation and misalignment. Here we report our design of a palindromic fragment to create an 'asymmetric palindromic insert' in the chloram-phenicol acetyltransferase gene of plasmid pBR325. The frequency with which the insert was deleted in Escherichia coli depends on the orientation of the gene in the plasmid. Our results suggest that replication-dependent deletion between direct repeats may occur preferentially in the lagging strand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glickman, B. W. & Ripley, L. S. Proc. natn. Acad. Sci. U.S.A. 81, 4046–4050 (1984).

    Article  ADS  Google Scholar 

  2. Ripley, L. S. & Glickman, B. W. in Cellular Responses to DNA Damage, UCLA Symposia on Molecular and Cellular Biology, Vol 10 (ed. N. R. Cozzarelli) 521–540 (Liss, Inc. New York, N.Y. 1983).

    Google Scholar 

  3. Drake, J. W., Glickman, B. W. & Ripley, L. S. Am. Scient. 71, 621–630 (1983).

    ADS  Google Scholar 

  4. Schaaper, R. M., Danforth, B. N. & Glickman, B. W. J. molec. Biol. 189, 273–284 (1986).

    Article  CAS  Google Scholar 

  5. Ripley, L. S. Proc. natn. Acad. Sci. U.S.A. 79, 4128–4132 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Streisinger, G. et al. Cold Spring Harb. Symp. quant. Biol. 31, 77–84 (1966).

    Article  CAS  Google Scholar 

  7. Albertini, A. M., Hofer, M. Calos, M. P. & Miller, J. H. Cell 29, 319–328 (1982).

    Article  CAS  Google Scholar 

  8. McHenry, C. S. A. Rev. Biochem. 57, 519–550 (1988).

    Article  CAS  Google Scholar 

  9. Scott, J. R. Microbiol. Rev. 48, 1–23 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bohr, V. A., Smith, C. A., Okumoto, D. A. & Hanawalt, P. C. Cell 40, 359–369 (1985).

    Article  CAS  Google Scholar 

  11. Mellon, I. & Hanawalt, P. C. Nature 342, 95–98 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Mellon, I., Spivak, G. & Hanawalt, P. C. Cell 51, 241–249 (1988).

    Article  Google Scholar 

  13. Tsurimoto, T. Melendy, T. & Stillman, B. Nature 346, 534–539 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Roberts, J. D., Thomas, D. C. & Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 88, 3465–3469 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Weaver, D. T. & DePamphilis, M. L. J. molec. Biol. 180, 961–986 (1984).

    Article  CAS  Google Scholar 

  16. Duckett, D. R., Murchie, A. I. H. & Lilley, D. M. J. EMBO J. 9, 583–590 (1990).

    Article  CAS  Google Scholar 

  17. Duckett, D. R. & Lilley, D. M. J. EMBO J 9, 1659–1664 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinh, T., Sinden, R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352, 544–547 (1991). https://doi.org/10.1038/352544a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352544a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing