Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The helical s constant for alanine in water derived from template-nucleated helices

Abstract

FORMATION of α helices from disordered polypeptides depends on the degree to which amino acids favour the helical state. The folding of helical oligopeptides can be modelled by two parameters: σ which reflects helix initiation and s which reflects propagation of a pre-existing helix and measures helical bias1,2. Scheraga has reported s values for oligopeptides of about 1.1, implying a weak helical bias for amino-acid residues3. By contrast, certain helical peptides studied by Baldwin seem to require much larger s values for alanine4. Resolution of this inconsistency requires experiments that disentangle the ease of propagation from that of initiation. In this study varying lengths of polyalanine are linked to a 'template' that initiates helical structure and permits study solely of propagation. We report here that the s value for alanine in water is close to 1, supporting the earlier results of Scheraga but not the more recent results of Baldwin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Poland, D. & Scheraga, H. A. Theory of Helix-Coil Transitions in Biopolymers (Academic, New York, 1970).

    Google Scholar 

  2. Zimm, B. H. & Bragg, J. J. chem. Phys. 31, 526–535 (1959).

    Article  ADS  CAS  Google Scholar 

  3. Scheraga, H. A. Pure appl. Chem. 50, 315–324 (1978).

    Article  CAS  Google Scholar 

  4. Marqusee, S. & Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 86, 5286–5290 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Kemp, D. S. & Curran, T. P. Tetrahedron Lett. 29, 4931–4939 (1988).

    Article  CAS  Google Scholar 

  6. Kemp, D. S. & Boyd, J. G. Pept. Proc. Am. Pept. Symp. 11, 677–679 (1990).

    Google Scholar 

  7. Kemp, D. S., Curran, T. P., Boyd, J. G. & Muendel, C. C. J. org. Chem. (in the press).

  8. Karle, I. L., Flippen-Anderson, J., Sukumar, M. & Balaram, P. Proc. natn. Acad. Sci. U.S.A. 84, 5087–5091 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Bundi, A. & Wuethrich, K. Biopolymers 18, 285–297 (1979).

    Article  CAS  Google Scholar 

  10. Wagner, G., Pardi, A. & Wuethrich, K. J. Am. chem. Soc. 105, 5948–5950 (1983).

    Article  CAS  Google Scholar 

  11. Pardi, A., Billeter, M. & Wuethrich, K. J. molec. Biol. 180, 741–751 (1984).

    Article  CAS  Google Scholar 

  12. Esposito, G., Carver, J. A., Boyd, J. & Campbell, I. D. Biochemistry 26, 1043–1050 (1987).

    Article  CAS  Google Scholar 

  13. Wuethrich, K., Billeter, M. & Braun, W. J. molec. Biol. 180, 715–740 (1984).

    Article  CAS  Google Scholar 

  14. Dyson, H. J., Ranee, M., Houghten, R. A., Lerner, R. A. & Wright, P. E. J. molec. Biol. 201, 161–200 (1988).

    Article  CAS  Google Scholar 

  15. Bax, A. & Davis, D. J. magn. Reson. 63, 207–213 (1985).

    ADS  CAS  Google Scholar 

  16. Bothner-By, A., Stephens, R. L. & Lee, J. J. Am. chem. Soc. 106, 811–813 (1984).

    Article  CAS  Google Scholar 

  17. Kessler, H., Griesinger, C., Kerssebaum, R., Wagner, K. & Ernst, R. J. Am. chem. Soc. 109, 607–609 (1987).

    Article  CAS  Google Scholar 

  18. States, D., Habekorn, R. & Ruben, D. J. magn. Reson. 48, 286–292 (1982).

    ADS  CAS  Google Scholar 

  19. Manning, M. C., Illangasekare, M. & Woody, R. W. Biophys. Chem. 31, 77–86 (1988).

    Article  CAS  Google Scholar 

  20. Bierzynsky, A., Kim, P. S. & Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 79, 2470–2474 (1982).

    Article  ADS  Google Scholar 

  21. Dyson, H. J., Ranee, M., Houghten, R. A., Wright, P. E. & Lerner, R. A. J. molec. Biol. 201, 201–217 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, D., Boyd, J. & Muendel, C. The helical s constant for alanine in water derived from template-nucleated helices. Nature 352, 451–454 (1991). https://doi.org/10.1038/352451a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352451a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing