Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sliding distance between actin and myosin filaments per ATP molecule hydrolysed in skinned muscle fibres

Abstract

MUSCLE contraction is generally thought to be driven by tilting1, 2 of the 19-nm-long myosin head3, part of the thick filament, while attached to actin, part of the thin filament. This motion would produce about 12 nm of filament sliding4, 5. Recent estimates of the sliding distance per ATP molecule hydrolysed by actomyosin in vitro vary widely from 8 nm (ref. 6) to >=200 nm (ref. 7). The latter value is incompatible with a power stroke incorporating a single tilting motion of the head. We have measured the isotonic sliding distance per ATP molecule hydrolysed during the interaction between myosin and actin in skinned muscle fibres. We directly estimated the proportion of simultaneously attached actomyosin complexes and their ATP use. We report here that at low loads the interaction distance is at least 40 nm. This distance corresponds to the length of the power stroke plus the filament sliding while actomyosin crossbridges bear negative drag forces5, 8. If the power stroke is 12 nm, then our results indicate the drag distance to be at least 28 nm. Our results could also be explained by multiple power strokes per ATP molecule hydrolysed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reedy, M. K., Holmes, K. C. & Tregear, R. T. Nature 207, 1276–1280 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Huxley, H. E. Science 164, 1356–1366 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Elliott, A. & Offer, G. J. molec. Biol. 123, 505–519 (1978).

    Article  CAS  Google Scholar 

  4. Huxley, A. F. & Simmons, R. M. Nature 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Ford, L. E., Huxley, A. F. & Simmons, R. M. J. Physiol. 269, 441–515 (1977).

    Article  CAS  Google Scholar 

  6. Toyoshima, Y. Y., Kron, S. J. & Spudich, J. A. Proc. natn. Acad. Sci. U.S.A. 87, 7130–7134 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Harada, Y., Sakurada, K., Aoki, T., Thomas, D. D. & Yanagida, T. J. molec. Biol. 216, 49–68 (1990).

    Article  CAS  Google Scholar 

  8. Huxley, A. F. Prog. Biophys. biophys. Chem. 7, 255–318 (1957).

    Article  CAS  Google Scholar 

  9. Yanagida, T., Arata, T. & Oosawa, F. Nature 316, 366–369 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Uyeda, T. Q. P., Kron, S. J. & Spudich, J. A. J. molec. Biol. 214, 699–710 (1990).

    Article  CAS  Google Scholar 

  11. Huxley, A. F. & Simmons, R. M. Cold Spring Harb. Symp. quant. Biol. 37, 669–680 (1973).

    Article  CAS  Google Scholar 

  12. Ferenczi, M. A., Homsher, E. & Trentham, D. R. J. Physiol. 352, 575–599 (1984).

    Article  CAS  Google Scholar 

  13. Cecchi, G., Colomo, F. & Lombardi, V. Boll. Soc. ital. biol. Sper. 52, 733–736 (1976).

    CAS  PubMed  Google Scholar 

  14. Goldman, Y. E., Hibberd, M. G. & Trentham, D. R. J. Physiol. 354, 577–604: 605–624 (1984).

    Article  CAS  Google Scholar 

  15. Goldman, Y. E. Biophys. J. 52, 57–68 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Tawada, K. & Kimura, M. Biophys. J. 45, 593–602 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Vale, R. D. & Oosawa, F. Adv. Biophys. 26, 97–134 (1990).

    Article  CAS  Google Scholar 

  18. Lombardi, V. & Piazzesi, G. J. Physiol. 431, 141–171 (1990).

    Article  CAS  Google Scholar 

  19. Ishijima, A., Doi, T., Sakurada, K. & Yanagida, T. Nature 352, 301–306 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, H., Goldman, Y. Sliding distance between actin and myosin filaments per ATP molecule hydrolysed in skinned muscle fibres. Nature 352, 352–354 (1991). https://doi.org/10.1038/352352a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352352a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing