Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase

Abstract

The refined crystal structure of Escherichia coli glutaminyl transfer RNA synthetase complexed with transfer RNAGln and ATP reveals that the struc-ture of the anticodon loop of the enzyme-bound tRNAGln differs extensively from that of the known crystal structures of uncomplexed tRNA molecules. The anticodon stem is extended by two non-Watson–Crick base pairs, leaving the three anti-codon bases unpaired and splayed out to bind snugly into three separate complementary pockets in the protein. These interactions suggest that the entire anticodon loop provides essential sites for glutaminyl tRNA synthetase discrimination among tRNA molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schulman, L. & Pelka, H. Biochemistry 24, 7309–7314 (1985).

    Article  CAS  Google Scholar 

  2. Schimmel, P. A. Rev. Biochem. 56, 125–158 (1987).

    Article  CAS  Google Scholar 

  3. Normanly, J. & Abelson, J. A. Rev. Biochem. 58, 1029–1049 (1989).

    Article  CAS  Google Scholar 

  4. Yaniv, M., Folk, W. R., Berg, P. & Soll, L. J. molec. Biol. 86, 245–260 (1974).

    Article  CAS  Google Scholar 

  5. Yarus, M., Knowlton, R. & Soll, L. in Nucleic Acid-Protein Recognition (ed. Vogel, H. J.) 391 (Academic, New York, 1977).

    Book  Google Scholar 

  6. Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. Science 246, 1135–1142 (1989).

    Article  ADS  CAS  Google Scholar 

  7. BrĂĽnger, A. T. J. molec. Biol. 203, 803 (1988).

    Article  Google Scholar 

  8. Finzel, B. C. et al. in: Crystallographic and Modeling Methods in Molecular Design (eds Ealick, S. & Bugg, C.) 175–189 (Springer Verlag, New York, 1990).

    Book  Google Scholar 

  9. Robertus, J. D. et al. Nature 250, 546 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Moras, D. et al. Nature 288, 669 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Holbrook, S., Sussman, J., Warrant, R. W. & Kim, S. H. J. molec. Biol. 123, 631–660 (1978).

    Article  CAS  Google Scholar 

  12. Westhof, E., Dumas, P. & Moras, D. Acta crystallogr. A44, 112–123 (1988).

    Article  Google Scholar 

  13. Woo, N., Roe, B. & Rich, A. Nature 286, 346–351 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Redfield, A. G. et al. in Structure and Dynamics of RNA (eds van Knippenberg, P. H. & Hilbers, C. W.) (Plenum, New York, 1986).

    Google Scholar 

  15. Puglisi, J. D., Wyatt, J. R. & Tinoco, I. Jr Biochemistry 29, 4215–4226 (1990).

    Article  CAS  Google Scholar 

  16. Yarus, M., Cline, S. W., Wier, P., Breeden, L. & Thompson, R. C. J. molec. Biol. 192, 235–255 (1986).

    Article  CAS  Google Scholar 

  17. Perret, V. et al. Nature 344, 787–789 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Seno, T., Agris, P. F. & Söll, D. Biochim. biophys. Acta 349, 328–338 (1974).

    Article  CAS  Google Scholar 

  19. Sprinzl, M., Hartmann, T., Weber, J., Blank, J. & Zeidler, R. Nucleic. Acids Res. 17, Suppl. R1–R172 (1989).

  20. Perona, J. J., Swanson, R. M., Rould, M. A., Steitz, T. A. & Söll, D. Science 246, 1152–1154 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Jahn, M., Englisch, S. & Söll, D. Nature 352, 258–260 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Nature 347, 203–206 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Brunie, S., Zelwer, C. & Risler, J.-L. J. molec. Biol. 216, 411–424 (1990).

    Article  CAS  Google Scholar 

  24. Brick, P., Bhat, T. N. & Blow, D. M. J. molec. Biol. 208, 83–98 (1989).

    Article  CAS  Google Scholar 

  25. Ravel, J. M., Wang, S. F., Heinemeyer, C. & Shive, W. J. biol. Chem. 240, 432–438 (1965).

    CAS  PubMed  Google Scholar 

  26. Priestle, J. P. J. appl. Crystallogr. 21, 572–576 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rould, M., Perona, J. & Steitz, T. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352, 213–218 (1991). https://doi.org/10.1038/352213a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352213a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing