Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extraction of high-resolution carbonate data for palaeoclimate reconstruction

Abstract

TEMPORAL variations in the calcium carbonate content of deepsea sediments provide direct stratigraphic as well as important palaeoenvironmental information relating to the global carbon cycle. Here I present an algorithm that allows carbonate content and porosity to be accurately predicted from saturated bulk density in equatorial pelagic carbonates. Applying the algorithm to continuous laboratory measurements of density made on DSDP and OOP cores yields a nearly continuous carbonate record for the upper ~200 m of the sediment section. Long, ultra-high-resolution carbonate curves of this type should yield new insight into the evolution of the carbon chemistry of the oceans, as well as the role of external (Milankovitch) forcing in the development of the carbonate system. The algorithm can also be applied to quantitative, high-resolution seismic data, thereby enabling detailed carbonate records to be extracted from remotely derived geophysical data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hays, J. D., Saito, T., Opdyke, N. D. & Burckle, L. H. Geol. Soc. Am. Bull. 80, 1481–1514 (1969).

    Article  ADS  Google Scholar 

  2. Arrhenius, G. Rep. Swedish Deep-Sea Exped. 1947–1948 5, 1–228 (1952).

    Google Scholar 

  3. Berger, W. H. J. foram. Res. 3, 187–195 (1973).

    Article  ADS  Google Scholar 

  4. Adelseck, C. G. & Anderson, T. F. Geology 6, 388–391 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Arrhenius, G. Paleogeogr. Paleoclimatol. Paleoecol, 67, 119–146 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Berger, W. H. & Keir, R. S. in Climate Processes and Climate Sensitivity AGU Geophys. Mag Monogr. Ser. 29 (eds Hansen, J. & Takahashi, T.) 337–351 (Washington DC, 1984).

    Book  Google Scholar 

  7. Pedersen, T. F. Geology 11, 16–19 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Berger, W. H. & Spitzy, A. Paleoceanography, 3, 401–411 (1988).

    Article  ADS  Google Scholar 

  9. Jones, G. A. & Kaiteris, P. J. sedim. Petrol, 53, 655–660 (1983).

    Article  CAS  Google Scholar 

  10. Chaney, R. C., Slonim, S. M. & Slonim, S. S. in Geotechnical Properties Behavior and Performance of Calcareous Soils, ASTM STP 777 (eds Demars, K. R. & Chaney, R. C.) 3–15 (Am. Soc. Testing and Materials. Philadelphia, 1982).

    Book  Google Scholar 

  11. Mayer, L. A. J. sedim, Petrol. 49, 819–836 (1979).

    Google Scholar 

  12. Hamilton, E. L. J. sedim. Petrol. 46, 280–300 (1976).

    Google Scholar 

  13. Wilkens, R. H. & Handyside, T. in Initial Rep. DSDP 85 (eds Mayer, LA. & Theyer, F.) 839–848 (US Govt Printing Office, Washington, DC, 1985).

    Google Scholar 

  14. Herbert, T. D. EOS 71, 1378 (1990).

    Google Scholar 

  15. Hagelberg, T. K., Pisias, N. & Elgar, S. EOS 71, 1378 (1990).

    Google Scholar 

  16. Pisias, N. G. & Moore, T. C. Earth planet. Sci. Lett 52, 450–458 (1981).

    Article  ADS  Google Scholar 

  17. Moore, T. C., Pisias, N. G. & Dunn, D. Marine Geol. 46, 217–233 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Prell, W. in Initial Rep. DSDP 68 (eds Prell, W. L. & Gardiner, J. V.) 455–464 (US Govt Printing Office, Washington, DC, 1982).

    Google Scholar 

  19. Shackleton, N. J., Imbrie, J. & Pisias, N. G. Phil. Trans. R. Soc. B318, 679–688 (1988).

    Article  CAS  Google Scholar 

  20. Ruddiman, W. F. & Raymo, M. E. Phil. Trans. R. Soc. B318, 411–430 (1988).

    Article  CAS  Google Scholar 

  21. Berger, A. Quat Intl 2, 1–14 (1989).

    Article  ADS  Google Scholar 

  22. Shackleton, N. J. & Hall, M. A. in Proc. Ocean Drill, Program 111 (eds Becker, K & Sakai, H.) (US Govt Printing Office, Washington DC, in the press).

  23. Oldenburg, D. W., Scheuer, T. & Levy, S. Geophysics 48, 1318–1337 (1983).

    Article  ADS  Google Scholar 

  24. Schock, S. G., LeBlanc, L. R., & Mayer, L. A. Geophysics 54, 445–450 (1989).

    Article  ADS  Google Scholar 

  25. Chuey, J. M., Rea, D. K. & Pisias, N. G. Quat. Res. 28, 323–339 (1987).

    Article  CAS  Google Scholar 

  26. Pisias, N. G. & Rea, D. K. Paleoceanography 3, 21–37 (1988).

    Article  ADS  Google Scholar 

  27. Weinreich, N. & Theyer, F. Initial Rept. DSDP 85 (eds Mayer, L.A. & Theyer, F.) 849–904 (US Govt Printing Office, Washington, DC, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, L. Extraction of high-resolution carbonate data for palaeoclimate reconstruction. Nature 352, 148–150 (1991). https://doi.org/10.1038/352148a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352148a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing