Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors

Abstract

AFFERENT activity has an important role in the formation of connections in the developing mammalian visual system1,2. But the extent to which the activity of target neurons shapes patterns of afferent termination and synaptic contact is not known. In the ferret's visual pathway, retinal ganglion cell axons from each eye segregate early in development into eye-specific laminae in the lateral geniculate nucleus (LGN)3. The dorsal laminae (termed laminae A and Al) then segregate further into inner and outer sublaminae that retain input from on-centre and off-centre retinal axons, respectively4,5. Thus, individual retinogeniculate axons form terminal arbors within laminae A and Al that are restricted to one inner or outer sublamina6. We report here that blockade of N-methyl-D-aspartate (NMDA) receptors on LGN cells with specific antagonists during the period of sublamina formation prevents retinal afferents from segregating into 'On' and 'Off sublaminae. Retinogeniculate axons have arbors that are not restricted appropriately, or are restricted in size but inappropri-ately positioned within the eye-specific laminae. NMDA receptor antagonists may specifically disrupt a mechanism by which LGN neurons detect correlated afferent and target activity7, and have been shown to reduce retinogeniculate transmission more generally8–10, causing LGN cells to have markedly reduced levels of activity. These results therefore indicate that the activity of postsynaptic cells can significantly influence the patterning of inputs and the structure of presynaptic afferents during development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Movshon, J. A. & Van Sluyters, R. C. A. Rev. Psychol. 32, 477–522 (1981).

    Article  CAS  Google Scholar 

  2. Sherman, S. M. & Spear, P. D. Physiol. Rev. 62, 740–855 (1982).

    Article  Google Scholar 

  3. Linden, D. C. Guillery, R. W. & Cucchiaro, J. J. comp. Neurol. 203, 189–211 (1981).

    Article  CAS  Google Scholar 

  4. Stryker, M. P. & Zahs, K. R. J. Neurosci. 3, 1943–1951 (1983).

    Article  CAS  Google Scholar 

  5. Hahm, J. & Sur, M. Neurosci. Abstr 14, 460 (1988).

    Google Scholar 

  6. Roe, A. W., Garraghty, P. E. & Sur, M. J. comp. Neurol. 288, 208–242 (1989).

    Article  CAS  Google Scholar 

  7. Constantine-Paton, M., Cline, H. T. & Debski, E. A. Rev. Neurosci. 13, 129–134 (1990).

    Article  CAS  Google Scholar 

  8. Sillito, A. M., Murphy, P. C., Salt, T. E. & Moody, C. I. J. Neurophysiol. 63, 347–355 (1990).

    Article  CAS  Google Scholar 

  9. Heggelund, P. & Hartveit, E. J. Neurophysiol. 63, 1347–1360 (1990).

    Article  CAS  Google Scholar 

  10. Kwon, Y. H., Esguerra, M. & Sur, M. J. Neurophysiol. (in the press).

  11. Cline, H. T., Debski, E. & Constantine-Paton, M. Proc. natn. Acad. Sci. U.S.A. 84, 4342–4345 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Cline, H. T. & Constantine-Paton, M. Neuron 3, 413–426 (1989).

    Article  CAS  Google Scholar 

  13. Cline, H. T. & Constantine-Paton, M. J. Neurosci. 10, 1197–1216 (1990).

    Article  CAS  Google Scholar 

  14. Scherer, W. J. & Udin, S. B. J. Neurosci. 9: 3837–3843 (1989).

    Article  CAS  Google Scholar 

  15. Bear, M. F., Kleinschmidt, A., Gu, Q. & Singer, W. J. Neurosci. 10, 909–925 (1990).

    Article  CAS  Google Scholar 

  16. Reiter, H. O. & Stryker, M. P. Proc. natn. Acad. Sci. U.S.A. 85, 3623–3627 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Miller, K. D., Chapman, B. & Stryker, M. P. Proc. natn. Acad. Sci. U.S.A. 86, 5183–5187 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Fox, K., Sato, H. & Daw, N. J. Neurosci. 9, 2443–2454 (1989).

    Article  CAS  Google Scholar 

  19. Langdon, R. B. & Sur, M. J. Neurophysiol. 64, 1484–1501 (1990).

    Article  CAS  Google Scholar 

  20. Shatz, C. J. & Stryker, M. P. Science 242, 87–89 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Sretavan, D. W., Shatz, C. J. & Stryker, M. P. Nature 336, 468–471 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Esguerra, M. & Sur, M. Neurosci. Abstr. 16, 159 (1990).

    Google Scholar 

  23. Esguerra, M., Kwon, Y. H. & Sur, M. Neurosci. Abstr. 15, 175 (1989).

    Google Scholar 

  24. Zahs, K. R. & Stryker, M. P. J. comp. Neurol. 241, 210 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahm, JO., Langdon, R. & Sur, M. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351, 568–570 (1991). https://doi.org/10.1038/351568a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351568a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing