Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Demethylation of CpG islands in embryonic cells

Abstract

DNA in differentiated somatic cells has a fixed pattern of methylation, which is faithfully copied after replication. By contrast, the methylation patterns of many tissue-specific and some housekeeping genes are altered during normal development1. This modification of DNA methylation in the embryo has also been observed in transgenic mice and in transfection experiments2. Here we report the fate in mice of an in vitro-methylated adenine phosphoribosyltransferase transgene. The entire 5′ CpG island region became demethylated, whereas the 3′ end of the gene remained modified and was even methylated de novo at additional sites. Transfection experiments in vitro show that the demethylation is rapid, is specific for embryonic cell-types and affects a variety of different CpG island sequences. This suggests that gene sequences can be recognized in the early embryo and imprinted with the correct methylation pattern through a combination of demethylation and de novo methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cedar, H. & Razin, A. Biochim. biophys. Acta 1049, 1–8 (1990).

    Article  CAS  Google Scholar 

  2. Jahner, D. & Jaenisch, R. In DNA Methylation: Biochemistry and Biological Significance (eds Razin, A., Cedar, H. & Riggs, A. D.) 189–219 (Springer-Verlag, New York, 1984).

    Book  Google Scholar 

  3. Lowy, I. et al. Cell 22, 817–823 (1980).

    Article  CAS  Google Scholar 

  4. Stein, R., Sciaky-Gallili, N., Razin, A. & Cedar, H. Proc. natn. Acad. Sci. U.S.A. 80, 2422–2426 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Stein, R., Razin, A. & Cedar, H. Proc. natn. Acad. Sci. U.S.A. 79, 3418–3422 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Antequera, F., Boyes, J. & Bird, A. Cell 62, 503–514 (1990).

    Article  CAS  Google Scholar 

  7. Jones, P. et al. Proc. natn. Acad. Sci. U.S.A. 87, 6117–6121 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Monk, M., Boubelik, M. & Lehnert, S. Development 99, 371–382 (1987).

    CAS  PubMed  Google Scholar 

  9. Chapman, V., Forrester, L., Sanford, J., Hastie, N. & Rossant, J. Nature 307, 284–286 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Sanford, J. P., Clark, H. J., Chapman, V. M. & Rossant, J. Genes Dev. 1, 1039–1046 (1987).

    Article  CAS  Google Scholar 

  11. Ponzetto-Zimmerman, C. & Wolgemuth, D. J. Nucleic Acids Res. 12, 2807–2821 (1984).

    Article  CAS  Google Scholar 

  12. Cedar, H. et al. Cold Spring Harb. Symp. quant Biol. 47, 605–609 (1983).

    Article  Google Scholar 

  13. Gautsch, J. W. & Wilson, M. C. Nature 301, 32–37 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Jahner, D. et al. Nature 298, 623–628 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Kolsto, A. B. et al. Nucleic Acids Res. 14, 9667–9678 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shemer, R., Walsh, A., Eisenberg, S., Breslow, J. M. & Razin, A. J. biol. Chem. 265, 1010–1015 (1990).

    CAS  PubMed  Google Scholar 

  17. Lock, L. F., Takagi, N. & Martin, G. Cell 48, 39–46 (1987).

    Article  CAS  Google Scholar 

  18. Singer-Sam, J. et al. Molec. cell. Biol. 10, 4987–4989 (1990).

    Article  CAS  Google Scholar 

  19. Gartler, S. M., Andina, R. J. & Grant, N. Expl Cell Res. 91, 454–457 (1975).

    Article  CAS  Google Scholar 

  20. Kratzer, P. G. & Chapman, V. M. Proc. natn. Acad. Sci. U.S.A. 78, 3093–3097 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Driscoll, D. J. & Migeon, B. R. Somatic. Cell Genet. 16, 267–275 (1990).

    Article  CAS  Google Scholar 

  22. Kratzer, P. G., Chapman, V. M., Lambert, H., Evans, R. & Liskay, R. M. Cell 33, 37–42 (1983).

    Article  CAS  Google Scholar 

  23. Einat, P., Bergman, Y., Yaffe, D. & Shani, M. Genes Dev. 1, 1075–1084 (1987).

    Article  CAS  Google Scholar 

  24. Shimada, T., Inokuchi, K. & Nienhuis, A. W. Molec. cell. Biol. 7, 2830–2837 (1987).

    Article  CAS  Google Scholar 

  25. Paroush, Z., Keshet, I., Yisraeli, J. & Cedar, H. Cell 63, 1229–1237 (1990).

    Article  CAS  Google Scholar 

  26. Keith, D. H., Singer-Sam, J. & Riggs, A. D. Molec. cell. Biol. 6, 4122–4125 (1986).

    Article  CAS  Google Scholar 

  27. Cordell, B. et al. Cell 18, 533–543 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, D., Keshet, I., Shani, M. et al. Demethylation of CpG islands in embryonic cells. Nature 351, 239–241 (1991). https://doi.org/10.1038/351239a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/351239a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing