Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Engineering disease resistance in plants

Abstract

Ever since the initial discovery of the molecules and genes involved in disease resistance in plants, attempts have been made to engineer durable disease resistance in economically important crop plants. Unfortunately, many of these attempts have failed, owing to the complexity of disease-resistance signalling and the sheer diversity of infection mechanisms that different pathogens use. Although disease-resistant transgenic plants or seeds are not yet available commercially, future product development seems likely as our current level of understanding of pathogenesis and plant defence improves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generating broad-spectrum disease resistance using an elicitor and resistance gene.

Similar content being viewed by others

References

  1. Walton, J. D. Host-selective toxins: agents of compatibility. Plant Cell 8, 1723–1733 (1996).

    Article  CAS  Google Scholar 

  2. White, F. F, Yang, B. & Johnson, L. B. Prospects for understanding avirulence gene function. Curr. Opin. Plant Biol. 3, 291–298 (2000).

    Article  CAS  Google Scholar 

  3. Delaney, T. P. et al. A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Thomma, B. P., Penninckx, I. A., Broekaert, W. F. & Cammue, B. P. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13, 63–68 (2001).

    Article  CAS  Google Scholar 

  5. Pieterse, C. M. & van Loon, L. C. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4, 52–58 (1999).

    Article  CAS  Google Scholar 

  6. Uknes, S. et al. Acquired resistance in Arabidopsis. Plant Cell 4, 645–656 (1992).

    Article  CAS  Google Scholar 

  7. Gorlach, J. et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8, 629–643 (1996).

    Article  CAS  Google Scholar 

  8. Thomma, B. P. et al. Separate jasmonate-dependent and salicylate-dependent pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl Acad. Sci. USA 95, 15107–15111 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Feys, B. J. & Parker, J. E. Interplay of signalling pathways in plant disease resistance. Trends Genet. 16, 449–455 (2000).

    Article  CAS  Google Scholar 

  10. Grant, J. J., Yun, B. W. & Loake, G. J. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J. 24, 569–582 (2000).

    Article  CAS  Google Scholar 

  11. Pieterse, C. M. et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571–1580 (1998).

    Article  CAS  Google Scholar 

  12. Stintzi, A. et al. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie 75, 687–706 (1993).

    Article  CAS  Google Scholar 

  13. Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J.-P. & Broekaert, W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103–2113 (1998).

    Article  CAS  Google Scholar 

  14. Cao, H., Li, X. & Dong, X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl Acad. Sci. USA 95, 6531–6536 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Bowling, S. A. et al. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6, 1845–1857 (1994).

    Article  CAS  Google Scholar 

  16. Frye, C. A., Tang, D. & Innes, R. W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl Acad. Sci. USA 98, 373–378 (2001).

    Article  ADS  CAS  Google Scholar 

  17. Doares, S. H., Narvaez-Vazquez, J., Conconi, A. & Ryan, C. A. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108, 1741–1746 (1995).

    Article  CAS  Google Scholar 

  18. Leslie, C. A. & Romani, R. J. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 88, 833–837 (1988).

    Article  CAS  Google Scholar 

  19. Hoffman, T., Schmidt, J. S., Zheng, X. & Bent, A. F. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119, 935–949 (1999).

    Article  CAS  Google Scholar 

  20. Jarosch, B., Kogel, K.-H. & Schaffrath, U. The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea . Mol. Plant-Microbe Interact. 12, 508–514 (1999).

    Article  CAS  Google Scholar 

  21. Alexander, D. et al. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related proteon 1a. Proc. Natl Acad. Sci. USA 90, 7327–7331 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Punja, Z. K. & Raharjo, S. H. T. Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis. 80, 999–1005 (1996).

    Article  CAS  Google Scholar 

  23. Maleck, K. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26, 403–410 (2000).

    Article  CAS  Google Scholar 

  24. Hain, R. et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361, 153–156 (1993).

    Article  ADS  CAS  Google Scholar 

  25. He, X. Z. & Dixon, R. A. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12, 1689–1702 (2000).

    Article  CAS  Google Scholar 

  26. Hipskind, J. D. & Paiva, N. L. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis . Mol. Plant-Microbe Interact. 13, 551–562 (2000).

    Article  CAS  Google Scholar 

  27. Dorey, S. et al. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant-Microbe Interact. 10, 646–655 (1997).

    Article  CAS  Google Scholar 

  28. Costet, L. et al. Relationship between localized acquired resistance (LAR) and the hypersensitive response (HR): HR is necessary for LAR to occur and salicylic acid is not sufficient to trigger LAR. Mol. Plant-Microbe Interact. 12, 655–662 (1999).

    Article  CAS  Google Scholar 

  29. Morel, J.-B. & Dangl, J. L. The hypersensitive response and the induction of cell death in plants. Cell Death Differ. 4, 671–683 (1997).

    Article  CAS  Google Scholar 

  30. Melchers, L. S. & Stuiver, M. H. Novel genes for disease-resistance breeding. Curr. Opin. Plant Biol. 3, 147–152 (2000).

    Article  CAS  Google Scholar 

  31. Pink, D. & Puddephat, I. Deployment of disease resistance genes by plant transformation - a 'mix and match' approach. Trends. Plant Sci. 4, 71–75 (1999).

    Article  CAS  Google Scholar 

  32. Joosten, M. H. A. J., Cozijnsen, T. J. & De Wit, P. J. G. M. Host resistance to fungal tomato pathogen lost by a single base pair change in an avirulence gene. Nature 367, 384–386 (1994).

    Article  ADS  CAS  Google Scholar 

  33. Gassmann, W. et al. Molecular evolution of virulence in natural field strains of Xanthomonas campestris pv. vesicatoria . J. Bacteriol. 182, 7053–7059 (2000).

    Article  CAS  Google Scholar 

  34. Rommens, C. M. & Kishore, G. M. Exploiting the full potential of disease-resistance genes for agricultural use. Curr. Opin. Biotechnol. 11, 120–125 (2000).

    Article  CAS  Google Scholar 

  35. Heath, M. C. Nonhost resistance and non-specific plant defenses. Curr. Opin. Plant Biol. 3, 315–319 (2000).

    Article  CAS  Google Scholar 

  36. Kamoun, S., van West, P., Vleeshouwers, V. G. A. A., de Groot, K. E. & Govers, F. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10, 1413–1425 (1998).

    Article  CAS  Google Scholar 

  37. Aarts, N. et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl Acad. Sci. USA 95, 10306–10311 (1998).

    Article  ADS  CAS  Google Scholar 

  38. Parker, J. E. et al. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8, 2033–2046 (1996).

    Article  CAS  Google Scholar 

  39. de Wit, P. J. G. M. Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu. Rev. Phytopathol. 30, 391–418 (1992).

    Article  CAS  Google Scholar 

  40. Keller, H. et al. Pathogen induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11, 223–235 (1999).

    Article  CAS  Google Scholar 

  41. Govrin, E. M. & Levine, A. The hypersensitive response facilitates plant infection by the necrotrphic pathogen Botrytis cinerea . Curr. Biol. 10, 751–757 (2000).

    Article  CAS  Google Scholar 

  42. Bonnet, P., Bourdon, E., Ponchet, M., Blein, J. P. & Ricci, P. Acquired resistance triggered by elicitins in tobacco and other plants. Eur. J. Plant Pathol. 102, 181–192 (1996).

    Article  CAS  Google Scholar 

  43. Schafer, W. The role of cutinase in fungal pathogenesis. Trends Microbiol. 1, 69–71 (1993).

    Article  CAS  Google Scholar 

  44. Proctor, R. H., Hohn, T. M. & McCormick, S. P. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 8, 593–601 (1995).

    Article  CAS  Google Scholar 

  45. Johal, G. S. & Briggs, S. P. Reductase activity encoded by the Hm1 resistance gene in maize. Science 258, 985–987 (1992).

    Article  ADS  CAS  Google Scholar 

  46. Tanaka, A., Shiotani, H., Yamamoto, M. & Tsuge, T. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata . Mol. Plant-Microbe Interact. 12, 691–702 (1999).

    Article  CAS  Google Scholar 

  47. Daub, M. E. & Ehrenshaft, M. The photoactivated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu. Rev. Phytopath. 38, 461–490 (2000).

    Article  CAS  Google Scholar 

  48. Cessna, S. G., Sear, V. E., Dickman, M. B. & Low, P. S. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12, 2191–2200 (2000).

    Article  CAS  Google Scholar 

  49. Hartman, C. L., Sarjit, J. & Schmitt, M. S. Newly characterised oxalate oxidase and uses therefor. Patent application WO9214824 〈http://ep.espacenet.com〉 (1992).

  50. Charne, D. G. et al. Production of pathogen resistant plants. Patent application WO9904012 〈http://ep.espacenet.com〉 (1999).

  51. Kesarwani, M., Azam, M., Natarajan, K. & Datta, A. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem. 275, 7230–7238 (2000).

    Article  CAS  Google Scholar 

  52. Lauge, R. et al. Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proc. Natl Acad. Sci. USA 95, 9014–9018 (1998).

    Article  ADS  CAS  Google Scholar 

  53. Gilchrist, D. G. et al. in Biology of Plant-Microbe Interactions (eds de Wit, P. J. M., Bisseling, T. & Stiekema, W. J.) 406–410 (Int. Soc. Mol. Plant-Microbe Interact., St Paul, MN, 2000).

    Google Scholar 

  54. Dickman, M. B. Trans-species transfer of apoptotic genes and transgenic plants developed thereby. Patent application WO0026391 〈http://ep.espacenet.com〉 (2000).

Download references

Acknowledgements

The authors thank all colleagues in Syngenta and especially the team at Syngenta-MOGEN for helpful discussions and suggestions, and B. van Wezenbeek for critically reading the manuscript. It is impossible to include all approaches in a complex field such as this, and we apologize to all colleagues whose work was not referred to.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten H. Stuiver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuiver, M., Custers, J. Engineering disease resistance in plants. Nature 411, 865–868 (2001). https://doi.org/10.1038/35081200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081200

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing