Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switch-based mechanism of kinesin motors

Abstract

Kinesin motors are specialized enzymes that use hydrolysis of ATP to generate force and movement along their cellular tracks, the microtubules. Although numerous biochemical and biophysical studies have accumulated much data that link microtubule-assisted ATP hydrolysis to kinesin motion, the structural view of kinesin movement remains unclear. This study of the monomeric kinesin motor KIF1A combines X-ray crystallography and cryo-electron microscopy, and allows analysis of force-generating conformational changes at atomic resolution. The motor is revealed in its two functionally critical states—complexed with ADP and with a non-hydrolysable analogue of ATP. The conformational change observed between the ADP-bound and the ATP-like structures of the KIF1A catalytic core is modular, extends to all kinesins and is similar to the conformational change used by myosin motors and G proteins. Docking of the ADP-bound and ATP-like crystallographic models of KIF1A into the corresponding cryo-electron microscopy maps suggests a rationale for the plus-end directional bias associated with the kinesin catalytic core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analysis of KIF1A in the ADP and ATP-like states.
Figure 2: Nucleotide-dependent movements of the mechanical elements of kinesin motors.
Figure 3: Cryo-EM maps of the microtubules decorated by the KIF1A.
Figure 4: Interactions of KIF1A with the microtubule.
Figure 5: Models for motility by various kinesin motors.

Similar content being viewed by others

References

  1. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 152–157 (1999).

    Article  Google Scholar 

  4. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sablin, E. P., Kull, J. F., Cooke, R., Vale, R. D. & Fletterick, R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380, 555–559 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Sack, S. et al. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36, 16155–16165 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kozielski, F. et al. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Gulick, A., Song, H., Endow, S. & Rayment, I. X-ray crystal structure of the yeast KAR3 motor domain comlexed with MgADP to 2.3 Å resolution. Biochemistry 37, 1769–1776 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Sablin, E. P. et al. Direction determination in the minus-end-directed kinesin motor ncd. Nature 395, 813–816 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Kozielski, F., De Bonis, S., Burmeister, W. P., Cohen-Addad, C. & Wade, R. H. The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. Struc. Fold Des. 7, 1407–1416 (1999).

    Article  CAS  Google Scholar 

  11. Woehlke, G. et al. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Sosa, H. et al. A model for the microtubule-ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Alonso, M., Damme, J., Vandekerckhove, J. & Cross, R. A. Proteolytic mapping of kinesin/ncd-microtubule interface: nucleotide-dependent conformational changes in the loops L8 and L12. EMBO J. 17, 945–951 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoenger, A. et al. Image reconstractions of microtubules decorated with monomeric and dimeric kinesins: comparison with X-ray structure and implications for motility. J. Cell Biol. 141, 419–430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kikkawa, M., Okada, Y. & Hirokawa, N. 15 Å resolution model of the monomeric kinesin motor, KIF1A. Cell 100, 241–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl Acad. Sci. USA 97, 640–645 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sprang, S. R. G protein mechanism: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Vale, R. D. Switches, latches, and amplifiers: common themes of molecular motors and G proteins. J. Cell Biol. 135, 291–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Houdusse, A., Kalabokis, V. N., Himmel, D., Szent-Gyorgyi, A. G. & Cohen, C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97, 459–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Geeves, M. A. & Holmes, K. C. Structural mechanism of muscle contraction. Ann. Rev. Biochem. 68, 687–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Milburn, M. V. et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Sack, S., Kull, F. J. & Mandelkow, E. Motor proteins of the kinesin family: structures, variations, and the nucleotide binding sites. Eur. J. Biochem. 262, 1–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Kjeldgaard, M., Nyborg, J. & Clark, B. F. The GTP binding motif: variations on a theme. FASEB J. 10, 1347–1368 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. The crystal structure of elongation factor Ef_Tu from Thermus aquaticus in the GTP conformation. Structure 1, 35–50 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Polekhina, G., Thirup, S., Kjeldgaard, M., Nissen, P. & Lippmann, C. Helix unwinding in the effector region of elongation factor Ef-Tu-GDP. Structure 4, 1141–1151 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Henningsen, U. & Schliwa, M. Reversal in the direction of movement of a molecular motor. Nature 389, 93–95 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science 281, 1200–1202 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Vale, R. D., Case, R., Sablin, E., Hart, C. & Fletterick, R. Searching for kinesin's mechanical amplifier. Phil. Trans R. Soc. Lond. B 355, 449–457 (2000).

    Article  CAS  Google Scholar 

  35. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Case, R. B., Rice, S., Hart, C. L., Ly, B. & Vale, R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Bohm, A., Gaudet, R. & Sigler, P. Structural aspects of heterotrimeric G-protein signalling. Curr. Opin. Biotech. 8, 480–487 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hirose, K., Lockhart, A., Cross, R. A. & Amos, L. A. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376, 277–279 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Hirose, K., Cross, R. A. & Amos, L. A. Nucleotide-dependent structural changes in dimeric ncd molecules complexed to microtubules. J. Mol. Biol. 278, 389–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Arnal, I. & Wade, R. H. Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. Structure 6, 33–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Hirose, K. et al. Structural comparison of dimeric Eg5, Neurospora kinesin (Nkin) and NCD head-Nkin neck chimera with conventional kinesin. EMBO J. 19, 5308–5314 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Thorn, K. S., Ubersax, J. A. & Vale, R. D. Engineering the processive run length of the kinesin motor. J. Cell Biol. 151, 1093–1100 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, Y.-Z. & Taylor, E. W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Gilbert, S. P., Moyer, M. L. & Johnson, K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 792–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusak, S. & Leberman, R. The structure of the Escherichia coli EF-Tu-EF-Ts complex at 2.5 Å resolution. Nature 379, 511–518 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Song, H. & Endow, S. A. Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant. Nature 396, 587–590 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Brunger, A. T. et al. Crystallography and NMR system: a new software suit for macromolecular structure determination. Acta Cryst. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Sindelar and J. Turner for providing comments on this manuscript and sharing their results before publication. We also thank M. Sugaya for technical assistance. This work was supported by a Center of Excellence Grant-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan (N.H.), and by funding from an NIH program project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Hirokawa.

Supplementary information

Figure 1 (GIF 8.9 KB)

Effective resolution of the cryo-EM maps. Fourier shell correlations between the two independent data sets are plotted. For the final map, the correlation coefficient fell to 0.5 at a resolution of 22 Å and 15 Å for the C351-ADP-microtubule complex and the C351-AMPPNP-microtubule complex, respectively.

Figure 2 (GIF 54.6 KB)

View showing electron density in the vicinity of the bound AMPPCP from a composite omit map (20 – 2.0 Å) contoured at 1.5 σ. A fragment of the final refined ATP-like KIF1A structure is shown. The γ-phosphate and Mg2+ ion (yellow asterisk) are labeled. The red asterisks indicate water molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikkawa, M., Sablin, E., Okada, Y. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001). https://doi.org/10.1038/35078000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing