Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fossiliferous Lana'i deposits formed by multiple events rather than a single giant tsunami

Abstract

Giant tsunamis, generated by submarine landslides in the Hawaiian Islands, have been thought to be responsible for the deposition of chaotic gravels high on the southern coastal slopes of the islands of Lana'i and Moloka'i, Hawaii. Here we investigate this hypothesis, using uranium–thorium dating of the Hulopoe gravel (on Lana'i) and a study of stratigraphic relationships, such as facies changes and hiatuses, within the deposit. The Hulopoe gravel contains corals of two age groups, representing marine isotope stages 5e and 7 (135,000 and 240,000 years ago, respectively), with significant geographical and stratigraphic ordering. We show that the Hulopoe gravel was formed by multiple depositional events, separated by considerable periods of time, thus invalidating the main premise of the ‘giant wave’ hypothesis. Instead, the gravels were probably deposited during interglacial periods (when sea level was relatively high) by typical Hawaiian shoreline processes such as seasonal wave patterns, storm events and possibly ‘normal’ tsunamis, and reached their present height by uplift of Lana'i.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the study area on the southern coast of Lana'i, Hawaii.
Figure 2: 230Th–234U–238U data for Hulopoe gravel coral clasts.
Figure 3: Age-elevation relationships for Hulopoe gravel coral clasts.

Similar content being viewed by others

References

  1. Stearns, H. T. Geology and ground-water resources of the islands of Lana'i and Kahoolawe, Hawaii. Hawaii Division of Hydrography/US Geol. Survey Bull. 6, 1–177 (1940).

    Google Scholar 

  2. Moore, J. G. & Moore, G. W. Deposit from a giant wave on the island of Lana'i, Hawaii. Science 226, 1312–1315 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Stearns, H. T. Quaternary shorelines in the Hawaiian Islands. Bishop Museum Press Bull. 237, 57 (1978).

    Google Scholar 

  4. Moore, G. W. & Moore, J. G. Large-scale bedforms in boulder gravel produced by giant waves in Hawaii. Geol. Soc. Am. Spec. Pap. 229, 101–110 (1988).

    Google Scholar 

  5. Moore, J. G. & Fornari, D. J. Drowned reefs as indicators of the rate of subsidence of the island of Hawaii. J. Geol. 92, 752–759 (1984).

    Article  ADS  Google Scholar 

  6. Moore, J. G. in Volcanism in Hawaii (eds Decker, R. W., Wright, T. L. & Staufer, P. H.) Ch. 2, 85–100 (USGS Professional Paper 1350, Washington DC, 1987).

    Google Scholar 

  7. Nisbet, E. & Piper, D. J. W. Giant submarine landslides. Nature 392, 329–330 (1998).

    Article  ADS  CAS  Google Scholar 

  8. McMurtry, G. M. et al. Stratigraphic constraints on the timing and emplacement of the Alika 2 giant Hawaiian submarine landslide. J. Volcanol. Geotherm. Res. 94, 35–58 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Young, R. W. & Bryant, E. A. Catastrophic wave erosion on the southeast coast of Australia: impact of the Lana'i tsunamis ca. 105ka? Geology 20, 199–202 (1992).

    Article  ADS  Google Scholar 

  10. Moore, J. G., Bryan, W. B. & Ludwig, K. R. Chaotic deposition by a giant wave, Molokai, Hawaii. Geol. Soc. Am. Bull. 106, 962–967 (1994).

    Article  ADS  Google Scholar 

  11. Bard, E. et al. Pleistocene sea levels and tectonic uplift based on dating of corals from Sumba Island, Indonesia. Geophys. Res. Lett. 23, 1473–1476 (1996).

    Article  ADS  Google Scholar 

  12. Rubin, K. H., Sherman, C. E. & Fletcher, C. H. III Ages of emerged coral deposits in Kapihaa Gulch, Lana'i, Hawaiian Islands and speculation about their environment of deposition. Trans. Am. Geophys. Union 76, F307 (1995).

    Article  Google Scholar 

  13. Felton, E. A., Crook, A. W. & Keating, B. W. The Hulopoe Gravel, Lana'i, Hawaii: New sedimentological data and their bearing on the “Giant Wave” (mega-tsunami) emplacement hypothesis. Pure Appl. Geophys. 157, 1257–1284 (2000).

    Article  ADS  Google Scholar 

  14. Muhs, D. R. & Szabo, B. J. New uranium-series ages of the Waimanalo Limestone, O'ahu, Hawaii: Implications for sea level during the last interglacial period. Mar. Geol. 118, 315–326 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Szabo, B. J., Ludwig, K. R., Muhs, D. R. & Simmons, K. R. Thorium-230 ages of corals and duration of the last interglacial sea-level high stand on O'ahu, Hawaii. Science 266, 93–96 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Sherman, C. E., Fletcher, C. H. & Rubin, K. H. Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, O'ahu, Hawaii. J. Sedim. Res. 69, 1083–1097 (1999).

    Article  CAS  Google Scholar 

  17. Fletcher, C. H. III & Jones, A. T. Sea-level highstand recorded in Holocene shoreline deposits on O'ahu, Hawaii. J. Sedim. Res. 66, 632–641 (1996).

    Google Scholar 

  18. Henderson, G. M. & Slowey, N. C. Evidence from U-Th dating against Northern Hemisphere forcing of the penultimate deglaciation. Nature 404, 61–66 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Bassinot, F. C. et al. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108 (1994).

    Article  ADS  Google Scholar 

  20. Brückner, H. & Radtke, U. Fossile strände and korallenbänke auf O'ahu, Hawaii. Essener Geogr. Arb. 17, 291–308 (1989).

    Google Scholar 

  21. Grigg, R. W. & Jones, A. T. Uplift caused by lithospheric flexure in the Hawaiian Archipelago as revealed by elevated coral deposits. Mar. Geol. 141, 11–25 (1997).

    Article  ADS  Google Scholar 

  22. Johnson, C. & Mader, C. L. Modeling the 105 ka Lana'i tsunami. Sci. Tsunam. Haz. 12, 33–38 (1994).

    Google Scholar 

  23. Moore, A. L. Landward fining in onshore gravel as evidence for a late Pleistocene tsunami on Molokai, Hawaii. Geology 28, 247–250 (2000).

    Article  ADS  Google Scholar 

  24. Dawson, A. G. & Shi, S. Tsunami Deposits. Pure Appl. Geophys. 157, 875–897 (2000).

    Article  ADS  Google Scholar 

  25. Harmon, R. S. et al. U-series and amino acid racemization geochronology of Bermuda: implications for eustatic sea level fluctuation over the past 250,000 years. Paleogeogr. Paleoclimatol. Paleoecol. 44, 41–70 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Gallup, C. D., Edwards, R. L. & Johnson, R. G. The timing of high sea levels over the past 200,000 years. Science 263, 796–800 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Chen, J. H., Curran, H. A., White, B. & Wasserburg, G. J. Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geol. Soc. Am. Bull. 103, 82–97 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Cox, D. C. The Lanai earthquake of February 1871 50 (Univ. Hawaii Environmental Center, Honolulu, Hawaii, 1985).

    Google Scholar 

  29. Watts, A. B. & Ten Brink, U. S. Crustal structure, flexure, and subsidence history of the Hawaiian Islands. J. Geophys. Res. 94, 10473–10500 (1989).

    Article  ADS  Google Scholar 

  30. Wessel, P. & Keating, B. H. Temporal variations of flexural deformation in Hawaii. J. Geophys. Res. 99, 2747–2756 (1994).

    Article  ADS  Google Scholar 

  31. Smith, J. R. & Wessel, P. Isostatic consequences of giant landslides on the Hawaiian ridge. Pure Appl. Geophys. 157, 1097–1114 (2000).

    Article  ADS  Google Scholar 

  32. Rubin, K. H. Analysis of 232Th-230Th in volcanic rocks: a comparison of thermal ionization mass spectrometry and other methodologies. Chem. Geol. (in the press).

  33. Edwards, R. L., Chen, J. H. & Wasserburg, G. J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 81, 175–192 (1986/87).

    Article  ADS  Google Scholar 

  34. Chen, J. H., Edwards, R. L. & Wasserburg, G. J. 238U, 234U, and 232Th in seawater. Earth Planet. Sci. Lett. 80, 241–251 (1986).

    Article  ADS  CAS  Google Scholar 

  35. Stirling, C. H., Esat, T. M., Lambeck, K. & McCulloch, M. T. Timing and duration of the last interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet. Sci. Lett. 160, 745–762 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Hamelin, B., Bard, E., Zindler, A. & Fairbanks, R. G. 234U-238U mass spectrometry of corals: how accurate is the U-Th age of the last interglacial period. Earth Planet. Sci. Lett. 106, 169–180 (1991).

    Article  ADS  CAS  Google Scholar 

  37. Henderson, G. M., Cohen, A. S. & O'Nions, R. K. 234U-238U ratios and 230Th ages for Hateruma Atoll corals: implications for coral diagenesis and seawater 234U-238U ratios. Earth Planet. Sci. Lett. 115, 65–73 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Grossman and M. Coyne for field assistance, K. Spencer for maintaining the UH Isotope Lab, J. Moore, W. Bryan, A. Felton, R. Grigg, C. Glenn, T. Jones, P. Wessel and B. Keating for enlivening discussions, the Manele Bay Hotel for access and D. Muhs for a review. This work was supported by the University of Hawaii, Seagrant, the US Geological Survey and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken H. Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, K., Fletcher, C. & Sherman, C. Fossiliferous Lana'i deposits formed by multiple events rather than a single giant tsunami. Nature 408, 675–681 (2000). https://doi.org/10.1038/35047008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047008

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing