Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular operations of the sodium–calcium exchanger revealed by conformation currents

Abstract

THE sodium-calcium exchanger is critical in the normal functioning of many cells1,2. In heart muscle, it is the principal way by which the cells keep the concentration of intracellular calcium low, pumping out the Ca2+ that enters the cytosol through L-type Ca2+ channels3,4. The exchanger may also contribute to the triggering of Ca2+ release during voltage-activated excitation–contraction coupling in heart5,6. Time resolved examination of the conforma-tional changes of macromolecules in living cells has so far been largely restricted to ion-channel proteins whose gating is voltage-dependent7,8. We have now directly measured electrical currents arising from the molecular rearrangements of the sarcolemmal Na–Ca exchanger. Changes in the conformation of the exchanger protein were activated by a rapid increase in the intracellular calcium concentration produced by flash photolysis of caged calcium9 in voltage-clamped heart cells. Two components of membrane current were produced, reflecting a calcium-dependent con-formational change of the transporter proteins and net transport of ions by the exchanger. The properties of these components provide evidence that the Na–Ca exchanger protein undergoes two consecutive membrane-crossing molecular transitions that each move charge, and that there are at least 250 exchangers per µm2 turning over up to 2,500 times per second.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., & Steinhardt, R. A. J. Physiol. 200, 431–458 (1969).

    Article  CAS  Google Scholar 

  2. Reuter, H. & Seitz, H. J. Physiol. 218, 908–912 (1968).

    Google Scholar 

  3. Bridge, J. H., Smolley, J. R. & Spitzer, K. W. Science 248, 376–378 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Crespo, L. M., Grantham, C. J. & Cannell, M. B. Nature 345, 618–621 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Leblanc, N. & Hume, J. R. Science 248, 372–376 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Lederer, W. J., Niggli, E. & Hadley, R. W. Science 248, 283 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Almers, W. Rev. Physiol. Biochem. Pharmacol. 82, 96–190 (1978).

    Article  CAS  Google Scholar 

  8. Horowicz, P. & Schneider, M. F. J. Physiol. 314, 595–633 (1981).

    Article  CAS  Google Scholar 

  9. Kaplan, J. H. A. Rev. Physiol. 52, 897–914 (1990).

    Article  CAS  Google Scholar 

  10. Beuckelmann, D. J. & Wier, W. G. J. Physiol. 414, 499–520 (1989).

    Article  CAS  Google Scholar 

  11. Lipp, P. & Pott L. J. Physiol. 403, 355–366 (1988).

    Article  CAS  Google Scholar 

  12. Slaughter, R. S., Garcia, M. L., Cragoe, E. J., Reeves, J. P. & Kaczorowski, G. J. Biochemistry 27, 2403–2409 (1988).

    Article  CAS  Google Scholar 

  13. Eisner, D. A. & Lederer, W. J. Am. J. Physiol. 248, C189–202 (1985).

    Article  CAS  Google Scholar 

  14. Hilgemann, D. W. Prog. Biophys. molec. Biol. 51, 1–45 (1988).

    Article  CAS  Google Scholar 

  15. Läuger, P. Biochim. biophys. Acta 779, 307–341 (1984).

    Article  Google Scholar 

  16. Ehara, T., Matsuoka, S. & Noma, A. J. Physiol. 410, 227–249 (1989).

    Article  CAS  Google Scholar 

  17. Callewaert, G., Vereecke, J. & Carmeliet, E. Pflügers Arch. 106, 424–426 (1986).

    Article  Google Scholar 

  18. Ehara, T., Noma, A. & Ono, K. J. Physiol. 403, 117–133 (1987).

    Article  Google Scholar 

  19. Cheon, J. & Reeves, J. P. J. biol. Chem. 263, 2309–2315 (1988).

    CAS  PubMed  Google Scholar 

  20. Allen, T. J. A., Noble, D. & Reuter, H. Sodium-Calcium Exchange. (Oxford University Press, Oxford, 1989).

    Google Scholar 

  21. Läuger P. J. Membrane Biol. 99, 1–11 (1987).

    Article  Google Scholar 

  22. Mullins, L. J. J. gen. Physiol. 70, 681–695 (1977).

    Article  CAS  Google Scholar 

  23. DiFrancesco, D. & Noble, D. Phil. Trans. R. Soc. 307, 353–398 (1985).

    Article  CAS  Google Scholar 

  24. Blaustein, M. P. Biophys. J. 20, 79–111 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Hodgkin, A. L. & Nunn, B. J. J. Physiol. 391, 371–398 (1987).

    Article  CAS  Google Scholar 

  26. Khananshvili, D. Biochemistry 29, 2437–2442 (1990).

    Article  CAS  Google Scholar 

  27. Kimura, J., Miyamae, S. & Noma, A. J. Physiol. 384, 199–222 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niggli, E., Lederer, W. Molecular operations of the sodium–calcium exchanger revealed by conformation currents. Nature 349, 621–624 (1991). https://doi.org/10.1038/349621a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349621a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing