Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-tone distortion in the basilar membrane of the cochlea

Abstract

WHEN humans listen to pairs of thnes they hear additional tones, or distortion products, that are not present in the stimulus1. Two-tone distortion products are also known as combination tones, because their pitches match combinations of the primary frequencies (f1 and f2, f2>f1), such as f2fl, (n+1)f1nf2 and (n +1)f2-nf1 (n = 1, 2,3 ...) (refs 2–4). Physiological correlates of the perceived distortion products exist in responses of auditory-nerve fibres5–8 and inner hair cells9 and in otoacoustic emissions (sounds generated by the cochlea, recordable at the ear canal)7,10–12. Because the middle ear responds linearly to sound13,14 and neural responses to distortion products can be abolished by damage to hair cells at cochlear sites preferentially tuned to the frequencies of the primary tones8, it was hypothesized that distortion products are generated at these sites and propagate mechanically along the basilar membrane to the location tuned to the distortion-product frequency7,8. But until now, efforts to confirm this hypothesis have failed15,16. Here we report the use of a new laser-velocimetry technique17 to demonstrate two-tone distortion in basilar-membrane motion at low and moderate stimulus intensities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jones, A. T. Amer. Phys. Teacher 3, 49–51 (1935).

    Article  Google Scholar 

  2. Goldstein, J. L. J. acoust. Soc. Am. 41, 676–689 (1967).

    Article  ADS  CAS  Google Scholar 

  3. Smoorenburg, G. F. J. acoust. Soc. Am. 52, 615–632 (1972).

    Article  ADS  Google Scholar 

  4. Zurek, P. M. & Sachs, R. M. Science 205, 600–602 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Buunen, T. J. F. & Rhode, W. S. J. acoust Soc. Am. 64, 772–781 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Goldstein, J. L. & Kiang, N. Y. S. Proc. IEEE 56, 981–992 (1968).

    Article  Google Scholar 

  7. Kim, D. O., Molnar, C. E. & Matthews, J. W. J. Acoust. Soc. Am. 67, 1704–1721 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Siegel, J. H., Kim, D. O. & Molnar, C. E. J. Neurophysiol. 47, 303–328 (1982).

    Article  CAS  Google Scholar 

  9. Nuttall, A. L. & Dolan, D. F. J. acoust. Soc. Am. 87, 782–790 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Kemp, D. T. Arch. Otorhinolaryngol. 224, 37–45 (1979).

    Article  CAS  Google Scholar 

  11. Mountain, D. C. Science 210, 71–72 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Siegel, J. H. & Kim, D. O. Hear. Res. 6, 171–182 (1982).

    Article  CAS  Google Scholar 

  13. Buunen, T. J. F. & Vlaming, M. S. M. G. J. acoust. Soc. Am. 69, 744–750 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Guinan, J. J. Jr & Peake, W. T. J. acoust. Soc. Am. 41, 1237–1261 (1967).

    Article  ADS  Google Scholar 

  15. Rhode, W. S. in Psychophysics and Physiology of Hearing (eds Evans, E. F. & Wilson, J. P.) 27–38 (Academic, London, 1977).

    Google Scholar 

  16. Wilson, J. P. & Johnstone, J. R. Nature 241, 206–207 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Ruggero, M. A. & Rich, N. C. Hear. Res. (in the press).

  18. Patuzzi, R., Sellick, P. M. & Johnstone, B. M. Hear. Res. 13, 19–27 (1984).

    Article  CAS  Google Scholar 

  19. Robles, L., Ruggero, M. A. & Rich, N. C. J. acoust. Soc. Am. 80, 1364–1374 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Robles, L., Ruggero, M. A. & Rich, N. C. in Cochlear Mechanisms, Structure, Function and Models (eds Wilson, J. P. & Kemp, D. T.) 369–375 (Plenum, New York, 1989).

    Book  Google Scholar 

  21. Robles, L., Ruggero, M. A. & Rich, N. C. in Mechanics and Biophysics of Hearing (eds Dallos, P., Geisler, C. D., Matthews, J. W., Ruggero, M. A. & Steele, C.) (Springer-Verlag, in the press).

  22. Nuttall, A. L., Dolan, D. F. & Avinash, G. in Mechanics and Biophysics of Hearing (eds Dallos, P., Geisler, C. D., Matthews, J. W., Ruggero, M. A. & Steele, C.) (Springer-Verlag, in the press).

  23. Ruggero, M. A. & Rich, N. C. J. Neurosci. (in the press).

  24. Sellick, P. M., Patuzzi, R. & Johnstone, B. M. J. acoust. Soc. Am. 72, 131–141 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robles, L., Ruggero, M. & Rich, N. Two-tone distortion in the basilar membrane of the cochlea. Nature 349, 413–414 (1991). https://doi.org/10.1038/349413a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349413a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing