Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolic stabilization of endplate acetylcholine receptors regulated by Ca2+ influx associated with muscle activity

Abstract

DURING formation of the neuromuscular junction, acetylcholine receptors in the endplate membrane become matabolically stabilized under neural control, their half-life increasing from about 1 day to about 10 days (see ref. 1 for review). The metabolic stability of the receptors is regulated by the electrical activity induced in the muscle by innervation2–4 We report here that metabolic stabilization of endplate receptors but not of extrajunctional receptors can be induced in the absence of muscle activity if muscles are treated with the calcium ionophore A23187. Acetylcholine receptor stabilization was also induced by culturing non-stimulated muscle in elevated K+ with the Ca2+ channel activator (+)-SDZ202-791. Conversely, activity-dependent receptor stabilization is prevented in muscle stimulated in the presence of the Ca2+ channel blockers (+)-PN200-110 or D-600. Treatment of muscles with ryanodine, which induces Ca2+ release from the sarcoplasmic reticulum in the absence of activity, does not cause stabilization of junctional receptors. Evidently, muscle activity induces meta- bolic acetylcholine receptor stabilization by way of an influx of Ca2+ ions through dihydropyridine-sensitive Ca2+ channels in the endplate membrane, whereas Ca2+ released from the sarcoplasmic reticulum is ineffective in this developmental process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Salpeter, M. M. & Loring, R. H. Prog. Neurobiol. 25, 297–325 (1985).

    Article  CAS  Google Scholar 

  2. Brenner, H. R. & Rudin, W. J. Physiol., Lond. 410, 501–512 (1989).

    Article  CAS  Google Scholar 

  3. Fumagalli, G., Balbi, S., Cangiano, A. & Lømo, T. Neuron 4, 563–569 (1990).

    Article  CAS  Google Scholar 

  4. Rotzler, S. & Brenner, H. R. J. Cell Biol. 111, 655–661 (1990).

    Article  CAS  Google Scholar 

  5. Jenden, D. J. & Fairhurst, A. S. Pharmacol. Rev. 21, 1–25 (1969).

    CAS  PubMed  Google Scholar 

  6. Fairhurst, A. S. & Hasselbach, W. Eur. J. Biochem. 13, 504–509 (1970).

    Article  CAS  Google Scholar 

  7. Fairhurst, A. S. Am. J. Physiol. 227, 1124–1131 (1974).

    CAS  PubMed  Google Scholar 

  8. Pezzementi, L. & Schmidt, J. J. biol. Chem. 256, 12651–12654 (1981).

    CAS  PubMed  Google Scholar 

  9. Klarsfeld, A. et al. Neuron 2, 1229–1236 (1989).

    Article  CAS  Google Scholar 

  10. Harris, J. B. & Tesleff, S. Acta physiol. scand. 83, 382–388 (1971).

    Article  CAS  Google Scholar 

  11. Pappone, P. A. J. Physiol., Lond. 306, 377–410 (1980).

    Article  CAS  Google Scholar 

  12. Beam, K. G. & Knudson, M. J. gen. Physiol. 91, 781–798 (1988).

    Article  CAS  Google Scholar 

  13. Cognard, C., Lazdunski, M. & Romey, G. Proc. natn. Acad. Sci. U.S.A. 83, 517–521 (1986).

    Article  ADS  CAS  Google Scholar 

  14. McCleskey, E. W. J. Physiol., Lond. 361, 231–249 (1985).

    Article  CAS  Google Scholar 

  15. Hof, R. P., Rüegg, U. T., Hof, A. & Vogel, A. J. cardiovasc. Pharmac. 7, 689–693 (1985).

    Article  CAS  Google Scholar 

  16. Kokubun, S. et al. Molec. Pharmac. 30, 571–584 (1986).

    CAS  Google Scholar 

  17. Cognard, C., Romey, G., Galizzi, J. Fosset, M. & Lazdunski, M. Proc. natn. Acad. Sci. U.S.A. 83, 1518–1522 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Beam, K. G. & Knudson, M. J. gen. Physiol. 91, 799–815 (1988).

    Article  CAS  Google Scholar 

  19. Tanabe, T., Beam, K., Powell, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Schmid, A., Kazazoglou, T., Renaud, J.-F. & Lazdunsky, M. FEBS Lett. 172, 114–118 (1984).

    Article  CAS  Google Scholar 

  21. Miledi, R., Parker, I. & Schalow, G. J. Physiol., Lond. 300, 197–212 (1980).

    Article  CAS  Google Scholar 

  22. Linden, D. C. & Fambrough, D. M. Neuroscience 4, 527–538 (1979).

    Article  CAS  Google Scholar 

  23. Schmidt, J. & Raftery, M. A. Analyt. Biochem. 52, 349–354 (1973).

    Article  CAS  Google Scholar 

  24. Levitt, T. A. & Salpeter, M. M. Nature 291, 239–241 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Salpeter, M. M., Cooper, D. L. & Levitt-Gilmour, T. J. J. Cell Biol. 103, 1399–1403 (1986).

    Article  CAS  Google Scholar 

  26. Bevan, S. & Steinbach, J. H. J. Physiol., Lond. 336, 159–177 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotzler, S., Schramek, H. & Brenner, H. Metabolic stabilization of endplate acetylcholine receptors regulated by Ca2+ influx associated with muscle activity. Nature 349, 337–339 (1991). https://doi.org/10.1038/349337a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349337a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing