Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism

Abstract

THE nature and distribution of interstellar grains in meteorites reflect both the material inherited from the Sun's parent molecular cloud and processes that operated in the early Solar System. The discovery of interstellar diamond and silicon carbide (SiC) in carbonaceous chondrites1,2 demonstrated that presolar grains were incorporated into at least some meteorites. Here I show that interstellar diamond and SiC were incorporated into all chondrite groups. Abundances rapidly go to zero with increasing metamor-phic grade (with diamond typically surviving better than SiC), suggesting that metamorphic destruction is responsible for the apparent absence of these grains in most chondrites. In unmetamor-phosed chondrites, abundances normalized to matrix content are similar for different classes (500–1,000 p.p.m. for diamond; 10–18 p.p.m. for SiC). Diamond samples from chondrites of different classes have remarkably similar noble-gas contents and isotopic compositions, although constituent diamonds may have come from many sources. SiC seems to be more diverse, in part because grains are large enough to measure individually, but average characteristics seem to be similar from meteorite to meteorite. These observations suggest that various classes of chondritic meteorites sampled the same Solar-System-wide reservoir of interstellar grains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewis, R. S., Tang Ming, Wacker, J. F., Anders, E. & Steel, E. Nature 326, 160–162 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Tang Ming & Anders, E. Geochim. cosmochim. Acta 52, 1235–1244 (1988).

    Article  ADS  Google Scholar 

  3. Lewis, R. S. & Anders, E. Lunar planet Sci. 19, 679–680 (1988).

    ADS  Google Scholar 

  4. Tang Ming & Anders, E. Geochim. cosmochim. Acta 52, 1245–1254 (1988).

    Article  ADS  Google Scholar 

  5. Zinner, E., Tang Ming & Anders, E. Geochim. cosmochim. Acta 53, 3273–3290 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Huss, G. R. & Lewis, R. S. Meteoritics 24, 278–279 (1989).

    ADS  Google Scholar 

  7. Huss, G. R. & Lewis, R. S. Lunar planet. Sci. 21, 542–543 (1990).

    ADS  Google Scholar 

  8. Alexander, C. M. O'D., Arden, J. W., Pier, J., Walker, R. M. & Pillinger, C. T. Lunar planet. Sci. 21, 9–10 (1990).

    ADS  Google Scholar 

  9. Stone, J., Hutcheon, I. D., Epstein, S. & Wasserburg, G. J. Lunar planet. Sci. 21, 1212–1213 (1990).

    ADS  Google Scholar 

  10. Amari, S. & Lewis, R. S. Meteoritics 24, 247–248 (1989).

    Article  ADS  Google Scholar 

  11. Huss, G. R., Taylor, G. J. & Keil, K. Geochim. cosmochim. Acta 45, 33–51 (1981).

    Article  ADS  CAS  Google Scholar 

  12. McSween, H. Y. Geochim. cosmochim. Acta 41, 477–491 (1977).

    Article  ADS  CAS  Google Scholar 

  13. McSween, H. Y. Geochim. cosmochim. Acta 41, 1777–1790 (1977).

    Article  ADS  CAS  Google Scholar 

  14. McSween, H. Y. Geochim. cosmochim. Acta 43, 1761–1770 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Larimer, J. W. & Anders, E. Geochim. cosmochim. Acta 31, 1239–1270 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Anders, E. & Grevesse, N. Geochim. cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Peck, J. A. Lunar planet. Sci. 14, 598–599 (1983).

    ADS  Google Scholar 

  18. Huss, G. R. Earth Moon Planet. 40, 165–211 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Schelhaas, N., Ott, U. & Begemann, F. Geochim. cosmochim. Acta (in the press).

  20. Alexander, C. M. O'D. et al. Meteoritics 24, 247 (1989).

    Article  Google Scholar 

  21. Alaerts, L., Lewis, R. S. & Anders, E. Geochim. cosmochim. Acta 43, 1399–1415 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Moniot, R. K. Geochim. cosmochim. Acta 44, 253–271 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Alaerts, L., Lewis, R. S., Matsuda, J. & Anders, E. Geochim. cosmochim. Acta 44, 189–209 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Alaerts, L., Lewis, R. S. & Anders, E. Geochim. cosmochim. Acta 43, 1421–1432 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Matsuda, J., Lewis, R. S., Takahashi, H. & Anders, E. Geochim. cosmochim. Acta 44, 1861–1874 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Sears, D. W., Grossman, J. N., Melcher, C. L., Ross, L. M. & Mills, A. A., Nature 287, 791–795 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Sears, D. W. G. & Hasan, F. A. Surv. Geophys. 9, 43–97 (1987).

    Article  ADS  Google Scholar 

  28. Scott, E. R. D. & Jones, R. H. Meteoritics 24, 324–325 (1989).

    ADS  Google Scholar 

  29. Christophe-Michel-Levy, M. Earth planet. Sci. Lett. 30, 143–150 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huss, G. Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism. Nature 347, 159–162 (1990). https://doi.org/10.1038/347159a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347159a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing