Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling

Abstract

IT is thought that in skeletal muscle excitation–contraction (EC) coupling, the release of Ca2+ from the sarcoplasmic reticulum is controlled by the dihydropyridine (DHP) receptor in the transverse tubular membrane, where it serves as the voltage sensor1–3. We have shown previously4 that injection of an expression plasmid carrying the skeletal muscle DHP receptor complementary DNA3 restores EC coupling and L-type calcium current that are missing in skeletal muscle myotubes from mutant mice with muscular dysgenesis5–9. This restored coupling resembles normal skeletal muscle EC coupling4, which does not require entry of extracellular Ca2+ (refs 10, 11). By contrast, injection into dysgenic myotubes of an expression plasmid carrying the cardiac DHP receptor cDNA12 produces L-type calcium current and cardiac-type EC coupling13, which does require entry of extracellular Ca2+ (refs 14–16). To identify the regions responsible for this important functional difference between the two structurally similar DHP receptors, we have expressed various chimaeric DHP receptor cDNAs in dysgenic myotubes. The results obtained indicate that the putative cytoplasmic region between repeats II and III of the skeletal muscle DHP receptor3 is an important determinant of skeletal-type EC coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schneider, M. F. & Chandler, W. K. Nature 242, 244–246 (1973).

    Article  CAS  ADS  Google Scholar 

  2. Rios, E. & Brum, G. Nature 325, 717–720 (1987).

    Article  CAS  ADS  Google Scholar 

  3. Tanabe, T. et al. Nature 328, 313–318 (1987).

    Article  CAS  ADS  Google Scholar 

  4. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  CAS  ADS  Google Scholar 

  5. Gluecksohn-Waelsch, S. Science 142, 1269–1276 (1963).

    Article  CAS  ADS  Google Scholar 

  6. Powell, J. A. & Fambrough, D. M. J. cell. Physiol. 82, 21–38 (1973).

    Article  CAS  Google Scholar 

  7. Klaus, M. M., Scordilis, S. P., Rapalus, J. M., Briggs, R. T. & Powell, J. A. Devl Biol. 99, 152–166 (1983).

    Article  CAS  Google Scholar 

  8. Beam, K. G., Knudson, C. M. & Powell, J. A. Nature 320, 168–170 (1986).

    Article  CAS  ADS  Google Scholar 

  9. Rieger, F. et al. Nature 330, 563–566 (1987).

    Article  CAS  ADS  Google Scholar 

  10. Armstrong, C. M., Bezanilla, F. M. & Horowicz, P. Biochim. biophys. Acta 267, 605–608 (1972).

    Article  CAS  Google Scholar 

  11. Knudson, C. M., Jay, S. D. & Beam, K. G. Biophys. J. 49, 13a (1986).

    Article  Google Scholar 

  12. Mikami, A. et al. Nature 340, 230–233 (1989).

    Article  CAS  ADS  Google Scholar 

  13. Tanabe, T., Mikami, A., Numa, S. & Beam, K. G. Nature 344, 451–453 (1990).

    Article  CAS  ADS  Google Scholar 

  14. Fabiato, A. J. gen. Physiol. 85, 291–320 (1985).

    Article  CAS  Google Scholar 

  15. Beuckelmann, D. J. & Wier, W. G. J. Physiol., Lond. 405, 233–255 (1988).

    Article  Google Scholar 

  16. Näbauer, M., Callewaert, G., Cleemann, L. & Morad, M. Science 244, 800–803 (1989).

    Article  ADS  Google Scholar 

  17. Mishina, M. et al. Nature 307, 604–608 (1984).

    Article  CAS  ADS  Google Scholar 

  18. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, T., Beam, K., Adams, B. et al. Regions of the skeletal muscle dihydropyridine receptor critical for excitation–contraction coupling. Nature 346, 567–569 (1990). https://doi.org/10.1038/346567a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346567a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing