Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNH deoxyribonucleohelicates: self assembly of oligonucleosidic double-helical metal complexes

Abstract

NUCLEIC acids, because of their key biological role, are prime targets for the design of either analogues that may mimic some of their features or of complementary ligands that may selectively bind to and react with them for regulation or reaction. Whereas there has been much work on the latter topic since the elucidation of the double-helical structure of DNA1,2, comparatively little has been done on structural and/or functional models, probably owing to the lack of self-organizing molecular systems. Here we present a class of artificial systems, the nucleohelicates, which are of interest from both points of view because they combine the double-helical structure of the double-stranded metal complexes, the helicates2,3, with the selective interaction features of nucleic-acid bases. These functionalized species allow the study of structural effects on the formation of the double helix and on the binding to other entities, in particular to nucleic acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watson, J. D. & Crick, F. H. C. Nature 171, 737–738 (1953).

    Article  ADS  CAS  Google Scholar 

  2. Lehn, J-M. et al. Proc. natn. Acad. Sci. U.S.A. 84, 2565–2569 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Lehn, J-M. & Rigault, A. Angew. Chem., int. Edn Engl. 27, 1095–1097 (1988).

    Article  Google Scholar 

  4. Alpha, B., Anklam, E., Deschenaux, R., Lehn, J-M. & Pietraskiewicz, M. Helv. chim. Acta 71, 1042–1052 (1988).

    Article  CAS  Google Scholar 

  5. Schneider, K. C. & Benner, S. A. J. Am. chem. Soc. 112, 453–455 (1990).

    Article  CAS  Google Scholar 

  6. Hoffmann, S., Witkowski, W. & Schubert, H. Z. Chem. 14, 154 (1974).

    Article  CAS  Google Scholar 

  7. Takenvoto, K., Kawabuko, F. & Kondo, K. Makromol. Chem. 148, 131–134 (1971).

    Article  Google Scholar 

  8. Browne, D. T., Eisinger, J. & Leonard, N. J. J. Am. chem. Soc. 90, 7302–7323 (1968).

    Article  CAS  Google Scholar 

  9. Leonard, N. J. Acc. chem. Res. 12, 423–429 (1979).

    Article  CAS  Google Scholar 

  10. Golankiewicz, K. & Celewicz, L. Polish J. Chem. 52, 1035–1038 (1978).

    CAS  Google Scholar 

  11. Sasaki, I., Dufour, M-N. & Gaudemer, A. Nouv. J. Chem. 6, 341–344 (1982).

    CAS  Google Scholar 

  12. Saito, I., Sugiyama, H., Matsuura, T. & Fukuyama, K. Tetrahedron Lett. 4467–4470 (1985).

  13. Kim, M. & Gokel, G. JCS Chem. Commun. 1686–1688 (1987).

  14. Sessler, J. L., Magdal, D. & Hugdall, J. J. Inclus. Phen. molec. Recogn. 7, 19–26 (1989).

    Article  CAS  Google Scholar 

  15. Pauling, L. & Corey, R. B. Nature 171, 346 (1953).

    Article  ADS  CAS  Google Scholar 

  16. Lehn, J-M. Angew. Chem., int. Edn Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  17. Felsenfeld, G., Danies, D. R. & Rich, A. J. Am. chem. Soc. 79, 2023–2024 (1957).

    Article  CAS  Google Scholar 

  18. Moser, H. E. & Dervan, P. E. Science 238, 645–650 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Francois, J-C., Saison-Behmoaras, T. & Helene, C. Nucleid Acids Res. 16, 11431–11440 (1988).

    Article  CAS  Google Scholar 

  20. Rodriguez-Ubis, J-C., Alpha, B., Plancherel, D. & Lehn, J-M. Helv. chim. Acta 67, 2264–2269 (1984).

    Article  CAS  Google Scholar 

  21. Banwarth, W. Helv. chim. Acta 71, 1517–1527 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koert, U., Harding, M. & Lehn, JM. DNH deoxyribonucleohelicates: self assembly of oligonucleosidic double-helical metal complexes. Nature 346, 339–342 (1990). https://doi.org/10.1038/346339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346339a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing