Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HIV requires multiple gp120 molecules for CD4-mediated infection

Abstract

BINDING of glycoprotein gp120 to the T cell-surface receptor CD4 is a crucial step in CD4-dependent infection of a target cell by the human immunodeficiency virus (HIV)1–5. Blocking some or all gp120 molecules on the viral surface should therefore inhibit infection. Consequently, competitive receptor inhibitors, such as soluble synthetic CD4 (sCD4), synthetic CD4 peptides and immunoglobulins, have been investigated in vitro6–17 and in vivol8–20 but little is known about the molecular mechanisms of these inhibitors. We have now quantitatively examined blocking by soluble CD4 in the hope of gaining insight into the complex process of viral binding, adsorption and penetration. At low sCD4 concentrations, the inhibition in three HIV strains is proportional to the binding of gp120. The biological association constant (gp120-sCD4 Kassoc) for HIV-2NIHZ is (8.5±0.5)×107M−1, whereas Kassoc for HIV-1HXB3 (1.4±0.2) and HIV-1MN (1.7±0.1)×109 M−1 are 15–20-fold larger. For all three viral strains, the biological Kassoc from infectivity assays is comparable to the chemical Kassoc. The inhibitory action of sCD4 at high concentrations, however, is not fully explained by simple proportionality with the binding to gp120. Positive synergy in blocking of infection occurs after about half the viral gp120s molecules are occupied, and is identical for all three viral strains, despite the large differences in Kassoc. Our method of measuring the viral-cell receptor Kassoc directly from infectivity assays is applicable to immunoglobulins, to other viruses and to assays using primary or transformed cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dalgleish, A. G. et al. Nature 312, 763–767 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Klatzmann, D. et al. Nature 312, 767–768 (1984).

    Article  ADS  CAS  Google Scholar 

  3. McDougal, J. S. et al. Science 231, 382–385 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Kowalski, M. et al. Science 237, 1351–1355 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Bedinger, P. et al. Nature 334, 162–165 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Lasky, L. A. et al. Cell 50, 975–985 (1987).

    Article  CAS  Google Scholar 

  7. Smith, D. H. et al. Science 238, 1704–1707 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Fisher, R. A. et al. Nature 331, 76–78 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Hussey, R. E. et al. Nature 331, 78–81 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Deen, K. C. et al. Nature 331, 82–84 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Traunecker, A., Lüke, W. & Karjalainen, K. Nature 331, 84–86 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Clapham, P. R. et al. Nature 337, 368–370 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Capon, D. J. et al. Nature 337, 525–531 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Traunecker, A., Schneider, J., Kiefer, H. & Karjalainen, K. Nature 339, 68–70 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Nara, P. L., Hwang, K. M., Rausch, D. M., Lifson, J. D. & Eiden, L. E. Proc. natn. Acad. Sci. U.S.A. 86, 7139–7143 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Sun, N.-C. et al. J. Virology 63, 3579–3585 (1989).

    CAS  PubMed  Google Scholar 

  17. Byrn, R. A. et al. J. Virology 63, 4370–4375 (1989).

    CAS  PubMed  Google Scholar 

  18. Watanabe, M. et al. Nature 337, 267–270 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Schooley, R. T. et al. Ann. intern. Med. 112, 247–253 (1990).

    Article  CAS  Google Scholar 

  20. Kahn, J. O. et al. Ann. intern. Med. 112, 254–261 (1990).

    Article  CAS  Google Scholar 

  21. Layne, S. P., Spouge, J. L. & Dembo, M. Proc. natn. Acad. Sci. U.S.A. 86, 4644–4648 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Spouge, J. L., Layne, S. P. & Dembo, M. Bull. math. Biol. 51, 715–730 (1989).

    Article  CAS  Google Scholar 

  23. Nara, P. L. et al. AIDS Res. hum. Retroviruses 3, 283–302 (1987).

    Article  CAS  Google Scholar 

  24. Nara, P. L. & Fischinger, P. J. Nature 332, 469–470 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Sweet, R. et al. Fifth Int. Conf. AIDS Abstr. W.C.O. 12 (1989).

  26. Myers, G. et al. Human Retroviruses and AIDS Section III, 9–12 (Los Alamos National Laboratory, New Mexico, 1990).

    Google Scholar 

  27. Nara, P. L. in Vaccines 89 (eds Lerner, R. A., Ginsberg, H., Chanock, R. M. & Brown, F.) 137–144 (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  28. Icenogle, J. et al. Virology 127, 412–425 (1983).

    Article  CAS  Google Scholar 

  29. Emini, E. A., Ostapchuk, P. & Wimmer, E. J. Virology 48, 547–550 (1983).

    CAS  PubMed  Google Scholar 

  30. Taylor, H. P., Armstrong, S. J. & Dimmock, N. J. Virology 159, 288–298 (1987).

    Article  CAS  Google Scholar 

  31. Goudsmit, J. et al. Proc. UCLA Symposia (in the press).

  32. Looney, D. J. et al. Science 241, 357–359 (1988).

    Article  ADS  CAS  Google Scholar 

  33. Saag, M. S. et al. Nature 334, 440–444 (1989).

    Article  ADS  Google Scholar 

  34. Cordonnier, A., Montagnier, L. & Emerman, M. Nature 340, 571–574 (1989).

    Article  ADS  CAS  Google Scholar 

  35. Zwart, G. et al. Lancet l, 474 (1990).

    Article  Google Scholar 

  36. Özel, M., Pauli, G. & Gelderblom, H. R. Arch. Virology 100, 255–266 (1988).

    Article  Google Scholar 

  37. Earl, P. L., Doms, R. W. & Moss, B. Proc. natn. Acad. Sci. U.S.A. 87, 648–652 (1990).

    Article  ADS  CAS  Google Scholar 

  38. Pyle, S. W. et al. AIDS Res. Hum. Retroviruses 3, 387–400 (1987).

    Article  CAS  Google Scholar 

  39. Kendall, M. & Stuart, A. The Advanced Theory of Statistics Vol. 2 (Griffin, London, 1979).

    MATH  Google Scholar 

  40. Efron, B. & Tibshirani, R. Stat. Sci. 1, 54–77 (1986).

    Article  Google Scholar 

  41. Moore, J. P. AIDS 4, 297–305 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Layne, S., Merges, M., Dembo, M. et al. HIV requires multiple gp120 molecules for CD4-mediated infection. Nature 346, 277–279 (1990). https://doi.org/10.1038/346277a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346277a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing