Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans

Abstract

CERTAIN cell fate decisions are specified by cell–cell interactions during the development of the nematode Caenorhabditis elegans. For example, in a wild-type hermaphrodite gonad, two cells, Z1.ppp and Z4.aaa, have the potential to become the anchor cell (AC)1. Intercellular communication establishes their fates and ensures that only one cell becomes the AC, while the other becomes a ventral uterine precursor cell (VU)2,3. One component of this intercellular communication seems to be the 'AC-to-VU' signal from the presumptive AC that causes the other cell to become a VU3. Genetic and developmental studies3,4 indicate that the lin-12 gene specifies the fates of Z1.ppp and Z4.aaa. Molecular studies5,6 suggest that lin-12 directly participates in their communications, perhaps acting as the receptor for the 'AC-to-VU' signal3. Here, we report the molecular lesions associated with lin-12 gain-of-function mutations, cell isolation experiments, and genetic studies of an unusual lin-12 allele. These data suggest that self-association of the putative lin-12-encoded receptor leads to its activation, and that certain gain-of-function mutations result in ligand-independent activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kimble, J. & Hirsh, D. Devl Biol. 70, 396–417 (1979).

    Article  CAS  Google Scholar 

  2. Kimble, J. Devl Biol. 87, 286–300 (1981).

    Article  CAS  Google Scholar 

  3. Seydoux, G. & Greenwald, I. Cell 57, 1237–1245.

  4. Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. Cell 34, 435–444 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Greenwald, I. Cell 43, 583–590 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Yochem, J., Weston, K. & Greenwald, I. Nature 335, 547–550 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Muller, H. J. Proc. int. Congr. Genet. 6, 213–255 (1932).

    Google Scholar 

  8. Fischer, S. G. & Lerman, L. S. Proc. natn. Acad. Sci. U.S.A. 77, 4420–4424 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Myers, R. M., Sheffield, V. C. & Cox, D. R. in Genomic Analysis: A Practical Approach (ed. Davies, K.) 95–139 (1989).

    Google Scholar 

  10. Higuchi, R. G. & Ochman, J. Nucleic Acids Res. 17, 5865 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartley, D. A., Xu, T. & Artavanis-Tsakonas, S. EMBO J. 6, 3407–3417 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelley, M. R., Kidd, S., Deutsch, W. A. & Young, M. W. Cell 51, 539–548 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Cell 43, 567–581 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Kidd, S., Kelley, M. R. & Young, M. W. Molec. cell. Biol. 6, 3094–3108 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kidd, S., Baylies, M. K., Gasic, G. P. & Young, M. W. Genes Dev. 3, 1113–1129 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Yochem, J. & Greenwald, I. Cell 58, 553–563 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Heffetz, D. & Zick, Y. J. biol. Chem. 259, 889–894 (1986).

    Google Scholar 

  18. Boni-Schnetzler, M., Rubin, J. & Pilch, P. F. J. biol. Chem. 259, 11543–11549 (1986).

    Google Scholar 

  19. Yarden, Y. & Schlessinger, J. Biochemistry 26, 1434–1442 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Yarden, Y. & Schlessinger, J. Biochemistry 26, 1443–1451 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Weston, K., Yochem, J. & Greenwald, I. Nucleic Acids Res. 17, 2138 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferguson, E. L. & Horvitz, H. R. Genetics 110, 17–72 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenwald, I., Seydoux, G. Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. Nature 346, 197–199 (1990). https://doi.org/10.1038/346197a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346197a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing