Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleation and growth of fibres and gel formation in sickle cell haemoglobin

Abstract

DEOXYGENATED sickle haemoglobin polymerizes into long 210-Å diameter fibres that distort and decrease the deformability of red blood cells, and cause sickle cell disease. The fibres consist of seven intertwined double strands1–3. They can form birefringent nematic liquid crystals (tactoids)4 and spherulites5,6. Rheologiealiy, the system behaves as a gel7,8. The equilibria show a phase separation and a solubility9–14. The reaction kinetics show a delay time, are then roughly exponential and are highly dependent on concentration and temperature9,10,15–18, and accord with the double nucleation model5,19. But these conclusions are derived from macroscopic data, without direct observation of individual fibres. We have now used non-invasive video-enhanced differential interference contrast (DIC) and dark-field microscopy to observe nucleation, growth and interaction of sickle deoxyhaemoglobin fibres in real time. The fibres originate both from centres that produce many radially distributed fibres and on the surface of pre-existing fibres, from which they then branch. The resulting network is cross-linked and dynamic in that it is flexible and continues to grow and cross-link. Our results support most aspects of the double nucleation model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wishner, B. C., Ward, K. B., Lattman, E. E. & Love, W. E. J. molec. Biol. 98, 179–194 (1975).

    Article  CAS  Google Scholar 

  2. Dykes, G. W., Crepeau, R. H. & Edelstein, S. J. Nature 272, 506–510 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Dykes, G. W., Crepeau, R. H. & Edelstein, S. J. J. molec. Biol. 130, 451–472 (1979).

    Article  CAS  Google Scholar 

  4. Harris, J. W. Proc. Soc. exp. Biol. Med. 75, 197–201 (1950).

    Article  CAS  Google Scholar 

  5. Ferrone, F. A., Hofrichter, J., Sunshine, H. R. & Eaton, W. A. Biophys. J. 32, 361–380 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Hofrichter, J. J. molec. Biol. 189, 553–571 (1986).

    Article  CAS  Google Scholar 

  7. Briehl, R. W. Nature 288, 622–624 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Gabriel, D. A., Smith, L. A. & Johnson, C. S. Jr Arch. Biochem. Biophys. 211, 774–776 (1981).

    Article  CAS  Google Scholar 

  9. Hofrichter, J., Ross, P. D. & Eaton, W. A. in Proceedings of the Symposium on Molecular and Cellular Aspects of Sickle Cell Disease (eds Hercules, J. I., Cottam, G. L., Waterman, M. R. & Schechter, A. N.) 185–223 (US Dept. Health, Education and Welfare, Bethesda, Maryland, 1976).

    Google Scholar 

  10. Hofrichter, J., Ross, P. D. & Eaton, W. A. Proc. natn. Acad. Sci. U.S.A. 73, 3035–3039 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Briehl, R. W. in Proceedings of the Symposium on Molecular and Cellular Aspects of Sickle Cell Disease (eds Hercules, J. I., Cottam, G. L., Waterman, M. R. & Schechter, A. N.) 145–181 (US Dept. Health, Education and Welfare, Bethesda, Maryland, 1976).

    Google Scholar 

  12. Briehl, R. W. J. molec. Biol. 123, 521–538 (1978).

    Article  CAS  Google Scholar 

  13. Magdoff-Fairchild, B., Poillon, W. N., Li, T.-L. & Bertles, J. F. Proc. natn. Acad. Sci. U.S.A. 73, 990–994 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Goldberg, M. A., Husson, M. A. & Bunn, H. F. J. biol. Chem. 252, 3414–3421 (1977).

    CAS  PubMed  Google Scholar 

  15. Hofrichter, J., Ross, P. D. & Eaton, W. A. Proc. natn. Acad. Sci. U.S.A. 71, 4864–4868 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Malfa, R. & Steinhardt, J. Biochem. biophys. Res. Commun. 59, 887–893 (1974).

    Article  CAS  Google Scholar 

  17. Ferrone, F. A., Hofrichter, J. & Eaton, W. A. J. molec. Biol. 183, 591–610 (1985).

    Article  CAS  Google Scholar 

  18. Briehl, R. W. Am. J. Pediat. Hemat. Oncol. 5, 390–398 (1983).

    Article  CAS  Google Scholar 

  19. Ferrone, F. A., Hofrichter, J. & Eaton, W. A. J. molec. Biol. 183, 611–631 (1985).

    Article  CAS  Google Scholar 

  20. Walker, R. A., Inoue, S. & Salmon, E. D. J. Cell Biol. 108, 931–937 (1989).

    Article  CAS  Google Scholar 

  21. Harris, J. W. & Bensusan, H. B. J. Lab. clin. Med. 86, 564–575 (1975).

    CAS  PubMed  Google Scholar 

  22. Briehl, R. W. Blood Cells 8, 201–212 (1982).

    CAS  PubMed  Google Scholar 

  23. Eaton, W. A., Hofrichter, J. & Ross, P. D. Blood 47, 621–627 (1976).

    CAS  PubMed  Google Scholar 

  24. Walker, R. A. et al. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  Google Scholar 

  25. Briehl, R. W. & Ewert, S. J. molec. Biol. 80, 445–458 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuel, R., Salmon, E. & Briehl, R. Nucleation and growth of fibres and gel formation in sickle cell haemoglobin. Nature 345, 833–835 (1990). https://doi.org/10.1038/345833a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345833a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing