Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relaxation of a transfer RNA specificity by removal of modified nucleotides

Abstract

THE molecular recognition of specific transfer RNAs by the appropriate aminoacyl-tRNA synthetase is an important step in determining the accuracy of translation of the genetic message from nucleic acids into proteins. Recent studies using variant tRNAs with specifie sequence modifications have indicated particular regions that determine their identity1–8. Here we consider whether the base modifications commonly found in tRNAs9 contribute to their identity. Although unmodified tRNAAsp is charged with aspartate as efficiently as the modified native tRNA, it is mischarged with arginine with considerably increased efficiency. Our results indicate that post-transcriptional modification of tRNAs introduces structural 'anti-determinants', restricting the efficiency with which the tRNAs are charged with inappropriate amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sampson, J. & Uhlenbeck, O. C. Proc. natn. Acad. Sci. U.S.A. 85, 1033–1037 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Hou, Y.-H. & Schimmel, P. Nature 333, 140–145 (1988).

    Article  ADS  CAS  Google Scholar 

  3. McClain, W. H. & Foss, K. Science 240, 793–796 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Rogers, J. & Söll, D. Proc. natn. Acad. Sci. U.S.A. 85, 6627–6631 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Schulman, L. H. & Pelka, H. Science 242, 765–768 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Sampson, J. R., DiRenzo, A. B., Behlen, L. S. & Uhlenbeck, O. C. Science 243, 1363–1366 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Schimmel, P. Biochemistry 28, 2747–2759 (1989).

    Article  CAS  Google Scholar 

  8. Normanly, J. & Abelson, J. A. Rev. Biochem. 58, 1029–1049 (1989).

    Article  CAS  Google Scholar 

  9. Björk, G. R. et al. A. Rev. Biochem. 56, 263–287 (1987).

    Article  Google Scholar 

  10. Moras, D. et al. Nature 288, 669–674 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Westhof, E., Dumas, P. & Moras, D. J. molec. Biol. 184, 119–145 (1985).

    Article  CAS  Google Scholar 

  12. Romby, P. et al. J. molec. Biol. 184, 455–471 (1985).

    Article  CAS  Google Scholar 

  13. Romby, P., Moras, D., Dumas, P., Ebel, J. P. & Giegé, R. J. molec. Biol. 195, 193–204 (1987).

    Article  CAS  Google Scholar 

  14. Dunn, J. J. & Studier, F. W. J. molec. Biol. 166, 477–535 (1983).

    Article  CAS  Google Scholar 

  15. Sprinzl, M., Hartmann, T., Weber, J., Blank, J. & Zeidler, R. Nucleic Acids Res. 17, 1–172 (1989).

    Article  Google Scholar 

  16. Peattie, D. A. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 77, 4679–4682 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Krzyzosiak, W. J. et al. Biochemistry 27, 5771–5777 (1988).

    Article  CAS  Google Scholar 

  18. Hall, K. B., Sampson, J. R., Uhlenbeck, O. C. & Redfield, A. G. Biochemistry 28, 5794–5800 (1989).

    Article  CAS  Google Scholar 

  19. Grosjean, H. & Kubli, E. in Microinjection and Organelle Transplantation Techniques (eds Celis, J. E., Graessman, A. & Loyter, A.) 304–326 (Academic, New York, 1986).

    Google Scholar 

  20. Giegé, R. et al. Eur. J. Biochem. 45, 351–362 (1974).

    Article  Google Scholar 

  21. Yarus, M. Biochemistry 11, 2352–2361 (1972).

    Article  CAS  Google Scholar 

  22. Ebel, J. P. et al. Biochemie 55, 547–557 (1973).

    Article  CAS  Google Scholar 

  23. Roe, B., Michael, M. & Dudock, B. Nature new Biol. 246, 135–138 (1973).

    Article  CAS  Google Scholar 

  24. Muramatsu, T. et al. Nature 336, 179–181 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Lorber, B. et al. Biochem. biophys. Res. Commun. 117, 259–267 (1983).

    Article  CAS  Google Scholar 

  26. Gangloff, J., Schutz, A. & Dirheimer, G. Eur J. Biochem. 65, 177–182 (1976).

    Article  CAS  Google Scholar 

  27. Gangloff, J., Keith, G., Ebel, J. P. & Dirheimer, G. Nature new Biol. 230, 125–127 (1971).

    Article  CAS  Google Scholar 

  28. Dietrich, A., Kern, D., Bonnet, J., Giegé, R. & Ebel, J. P. Eur J. Biochem. 70, 147–158 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perret, V., Garcia, A., Grosjean, H. et al. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature 344, 787–789 (1990). https://doi.org/10.1038/344787a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344787a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing