Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transactivation of c-fos and β-actin genes by raf as a step in early response to transmembrane signals

Abstract

A PRIMARY response to many growth factor-induced trans-membrane signals is the rapid activation of transcription of the proto-oncogene c-fos and other early-response genes, including the β-actin gene1,2. The c-raf gene encodes a cytoplasmic serine/threonine kinase, raf-1 (réf. 3), whose activity is also respon-sive to transmembrane signals4,5 and which in mutant form can transform cells6. Here we show that in transient assays, the v-raf protein, which is a constitutively activated oncogenic counterpart of raf-1, can transactivate transcription from two early-response promoters, including the c-fos promoter from human and murine cells and the human β-actin gene promoter. Multiple elements of the human fos promoter, including the dyad symmetry element necessary for growth-factor induction, an octanucleotide direct repeat element, and the region spanning the sequence from nucleo-tides –225 to –99 can all serve as targets for raf induction. The c-myc promoter and two adenovirus-2 early promoters are not induced. These findings indicate that raf kinase, when activated by a transmembrane signal or by mutation of a regulatory domain, can phosphorylate a factor(s) capable of regulating transcription of the c-fos and actin genes. The oncogenic form of raf may transform by constitutively activating early response proto-oncogenes such as c-fos.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greenberg, M. E. & Ziff, E. B. Nature 311, 433–438 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Elder, P. K., Schmidt, L. J., Ono, T. & Getz, M. J. Proc. natn. Acad. Sci. U.S.A. 81, 7476–7480 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Moelling, K., Heimann, B., Beimling, P., Rapp, U. R. & Sander, T. Nature 312, 558–561 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Morrison, D. K., Kaplan, D. R., Rapp, U. & Roberts, T. M. Proc. natn. Acad. Sci. U.S.A. 85, 8855–8859 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Morrison, D. K. et al. Cell 58, 649–657 (1989).

    Article  CAS  Google Scholar 

  6. Rapp, U. R. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4218–4222 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Bonner, T. I. et al. Molec. Cell Biol. 5, 1400–1407 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Stanton, V. P. Jr & Cooper, G. M. Molec. Cell Biol. 7, 1171–1179 (1987).

    Article  CAS  Google Scholar 

  9. Stanton, V. P. Jr, Nichols, D. W., Laudano, A. P. & Cooper, G. M. Molec. Cell Biol. 9, 639–647 (1989).

    Article  CAS  Google Scholar 

  10. Fisch, T. M., Prywes, R. & Roeder, R. G. Molec. Cell Biol. 7, 3490–3502 (1987).

    Article  CAS  Google Scholar 

  11. Gilman, M. Z., Wilson, R. N. & Weinberg, R. A. Molec. Cell Biol. 6, 4305–4316 (1986).

    Article  CAS  Google Scholar 

  12. Cepko, C. L., Roberts, B. E. & Mulligan, R. C. Cell 37, 1053–1062 (1984).

    Article  CAS  Google Scholar 

  13. Gunning, P., Leavitt, J., Muscat, G., Ng, S. Y. & Kedes, L. Proc. natn. Acad. Sci. U.S.A. 84, 4831–4835 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Weeks, D. L. & Jones, N. C. Molec. Cell Biol. 3, 1222–1234 (1983).

    Article  CAS  Google Scholar 

  15. Weeks, D. L. & Jones, N. C. Nucleic Acids Res. 13, 5389–5402 (1985).

    Article  CAS  Google Scholar 

  16. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell 35, 603–610 (1983).

    Article  CAS  Google Scholar 

  17. Treisman, R. Cell 46, 567–574 (1986).

    Article  CAS  Google Scholar 

  18. Visvader, J., Sassone Corsi, P. & Verma, I. M. Proc. natn. Acad. Sci. U.S.A. 85, 9474–9478 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Sassone Corsi, P., Visvader, J., Ferland, L., Mellon, P. L. & Verma, I. M. Genes Dev. 2, 1529–1538 (1988).

    Article  CAS  Google Scholar 

  20. Fisch, T. M., Prywes, R., Simon, M. C. & Roeder, R. G. Genes Dev. 3, 198–211 (1989).

    Article  CAS  Google Scholar 

  21. Sassone Corsi, P., Sisson, J. C. & Verma, I. M. Nature 334, 314–319 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Kaibuchi, K. et al. J. biol. Chem. 264, 20855–20858 (1989).

    CAS  PubMed  Google Scholar 

  23. Ng, S. Y., Gunning, P., Liu, S. H., Leavitt, J. & Kedes, L. Nucleic Acids Res. 17, 601–615 (1989).

    Article  CAS  Google Scholar 

  24. Norman, C., Runswick, M., Pollock, R. & Treisman, R. Cell 55, 989–1003 (1988).

    Article  CAS  Google Scholar 

  25. Boxer, L. M., Prywes, R., Roeder, R. G. & Kedes, L. Molec. Cell Biol. 9, 515–522 (1989).

    Article  CAS  Google Scholar 

  26. Prywes, R., Dutta, A., Cromlish, J. A. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 85, 7206–7210 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Prywes, R. & Roeder, R. G. Cell 47, 777–784 (1986).

    Article  CAS  Google Scholar 

  28. Wasylyk, C., Wasylyk, B., Heidecker, G., Huleihel, M. & Rapp, U. R. Molec. Cell Biol. 9, 2247–2250 (1989).

    Article  CAS  Google Scholar 

  29. Waterfield, M. D. et al. Nature 304, 35–39 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Downward, J. et al. Nature 307, 521–527 (1984).

    Article  ADS  CAS  Google Scholar 

  31. Curran, T., MacConnell, W. P., van Straaten, F. & Verma, I. M. Molec. Cell Biol. 3, 914–921 (1983).

    Article  CAS  Google Scholar 

  32. Shimizu, K. et al. Proc. natn. Acad. Sci. U.S.A. 82, 5641–5645 (1985).

    Article  ADS  CAS  Google Scholar 

  33. Baeuerle, P. A. & Baltimore, D. Cell 53, 211–217 (1988).

    Article  CAS  Google Scholar 

  34. Wigler, M. et al. Cell 11, 223–232 (1977).

    Article  CAS  Google Scholar 

  35. Gorman, C. M., Moffat, L. F. & Howard, B. H. Molec. Cell Biol. 2, 1044–1051 (1982).

    Article  CAS  Google Scholar 

  36. Luckow, B. & Schutz, G. Nucleic Acids Res. 15, 5490 (1987).

    Article  CAS  Google Scholar 

  37. McKnight, S. & Kingsbury, R. Science 217, 316–324 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamal, S., Ziff, E. Transactivation of c-fos and β-actin genes by raf as a step in early response to transmembrane signals. Nature 344, 463–466 (1990). https://doi.org/10.1038/344463a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344463a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing