Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variations in effective elastic thickness of the North American lithosphere

Abstract

THE isostatic response of the lithosphere to loading can often be successfully represented by a model in which the weight of topographic features on the Earth's surface is supported in part by stresses within a flexed elastic plate overlying an inviscid asthenos-phere, and in part by the buoyancy forces associated with the deflection of density interfaces accompanying flexure1,2. Previous estimates3–10 of the apparent thickness of the elastic plate in North America, based on the shapes of sedimentary basins or the deformation accompanying slip on faults, range from a few to more than a hundred kilometres—or equivalently, flexural rigidities ranging from about 1021 to 1025 N m−1. Here we use a technique for estimating flexural rigidity that is not limited to sedimentary basins to map variations in the effective elastic thickness of the North American lithosphere. The effective elastic thickness ranges from a minimum of 4 km in the Basin and Range Province to >100 km in the Precambrian core of the continent, supporting the idea that flexural rigidity increases with time since the last thermal event11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barrell, J. J. Geol. 22, 425–443 (1914).

    Google Scholar 

  2. Gunn, R. J. Franklin Inst. 236, 372–396 (1943).

    Google Scholar 

  3. Cohen, T. J. & Meyer, R. P. Geophys. Monogr. 10, 141–165 (1966).

    Google Scholar 

  4. Walcott, R. I. J. geophys. Res. 75, 3941–3954 (1970).

    Article  ADS  Google Scholar 

  5. Karner, G. D. & Watts, A. B. J. geophys. Res. 88, 10449–10477 (1983).

    Article  ADS  Google Scholar 

  6. Stein, R. S. & Barrientos, S. E. J. geophys. Res. 90, 11355–11366 (1985).

    Article  ADS  Google Scholar 

  7. Quinlan, G. M. & Beaumont, C. Can. J. Earth Sci. 21, 973–996 (1984).

    Article  ADS  Google Scholar 

  8. Fulton, R. J. & Walcott, R. I. Geol. Soc. Am. Mem. 142, 163–173 (1975).

    Google Scholar 

  9. Sheffels, B. & McNutt, M. K. J. geophys. Res. 91, 6419–6431 (1986).

    Article  ADS  Google Scholar 

  10. Bills, B. G. & May, G. M. J. geophys. Res. 92, 11493–11508 (1987).

    Article  ADS  Google Scholar 

  11. Karner, G. D., Steckler, M. S. & Thome, J. A. Nature 304, 250–253 (1983).

    Article  ADS  Google Scholar 

  12. Bechtel, T. D. thesis, Brown Univ. (1989).

  13. Forsyth, D. W. J. geophys. Res. 90, 12623–12632 (1985).

    Article  ADS  Google Scholar 

  14. Bechtel, T. D., Forsyth, D. W. & Swain, C. J. Geophys. J. 90, 445–465 (1987).

    Article  ADS  Google Scholar 

  15. Ebinger, C. J., Bechtel, T. D., Forsyth, D. W. & Brown, C. O. J. geophys. Res. 94, 2883–2901 (1989).

    Article  ADS  Google Scholar 

  16. Zuber, M. T., Bechtel, T. D. & Forsyth, D. W. J. geophys. Res. 94, 9353–9367 (1989).

    Article  ADS  Google Scholar 

  17. McNutt, M. K., Diament, M. & Kogarn, M. G. J. geophys. Res. 93, 8825–8838 (1988).

    Article  ADS  Google Scholar 

  18. Banks, R. J., Parker, R. L. & Huestis, S. P. Geophys. J. 51, 431–452 (1977).

    Article  ADS  Google Scholar 

  19. McNutt, M. K. J. geophys. Res. 85, 6377–6396 (1980).

    Article  ADS  Google Scholar 

  20. Stephenson, R. Geophys. J. 77, 385–413 (1984).

    Article  ADS  Google Scholar 

  21. Jessop, A.M., Hobart, M. A. & Sclater, J. G. Geotherm. Ser. 5, (1976).

  22. Pollack, H. N. & Chapman, D. S. Tectonophysics 38, 279–296 (1977).

    Article  ADS  Google Scholar 

  23. Blackwell, D. D. Geol. Soc. Am. Mem. 152, 175–208 (1978).

    Google Scholar 

  24. Gough, D. I. J. Geomag. Geoelect. 26, 105–123 (1974).

    Article  ADS  Google Scholar 

  25. Tucker, W., Herrin, E. & Friedman, H. W. Bull. Seis mol. Soc. Am. 58, 1243–1260 (1968).

    Google Scholar 

  26. Dziewonski, A. M. & Anderson, D. L. J. geophys. Res. 88, 3295–3314 (1983).

    Article  ADS  Google Scholar 

  27. Hales, A. L. & Doyle, H. A. Geophys. J. 13, 403–415 (1967).

    Article  ADS  Google Scholar 

  28. Glazner, A. F. & Schubert, G. J. geophys. Res. 90, 5405–5409 (1985).

    Article  ADS  Google Scholar 

  29. Chase, C. G. & Wallace, T. E. J. geophys. Res. 93, 2795–2802 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechtel, T., Forsyth, D., Sharpton, V. et al. Variations in effective elastic thickness of the North American lithosphere. Nature 343, 636–638 (1990). https://doi.org/10.1038/343636a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343636a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing