Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The oxidation state of the Earth's sub-oceanic mantle from oxygen thermobarometry of abyssal spinel peridotites

Abstract

THE oxygen fugacity (fO2), or redox state, of the Earth's mantle is an important parameter in the evolution of mantle-derived magmatic rocks. Most estimates of the upper-mantle redox state have been based on samples of the sub-continental mantle and terrestrial lavas, and estimates of fO2 obtained by thermo-barometric methods tend to cluster within ±1.5 log units of the FMQ (fayalite–magnetite–quartz) reference oxygen fugacity buffer1–3. Much less is known about the redox state of the sub-oceanic mantle, the ultimate source of mid-ocean-ridge basalts (MORBs). Here we use oxygen thermobarometry of abyssal spinel peridotites, representative of most of the Earth's mid-ocean-ridge systems, to show that the redox state of the sub-oceanic mantle lies at values of up to 4 log units (average of 1.35 log units) more reduced than FMQ. Our results are in excellent agreement with oxygen fugacities of MORBs obtained from Fe3+/Fe2+ ratios of quenched glass in pillow basalts4. This agreement confirms the redox state of the MORB source region and suggests that MORB glasses (as opposed to the cores of pillow basalts) have not undergone significant oxidation (hydrogen degassing) during their ascent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mattioli, G. S. & Wood, B. J. Nature 322, 626–628 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Mattioli, G. S. & Wood, B. J. Contr. Miner. Petrol. 98, 148–162 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Wood, B. J. & Virgo, D. Geochim. cosmochim. Acta 54, 1277–1291 (1989).

    Article  ADS  Google Scholar 

  4. Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. Earth planet. Sci. Lett. 79, 397–411 (1986).

    Article  ADS  CAS  Google Scholar 

  5. O'Neill, H. St. C. & Wall, V. J. J. Petrol. 28, 1169–1102 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Dick, H. J. B. J. geol. Soc. London, Spec. vol.: Magmatism in the Ocean Basins, (in the press).

  7. Wells, P. R. A. Contr. Miner. Petrol. 62, 129–139 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Myers, J. & Eugster, H. P. Contr. Miner. Petrol. 82, 75–90 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Morgan, W. J. Bull. Am. Ass. Petrol. Geol. 56, 203–213 (1972).

    Google Scholar 

  10. Morgan, W. J. Mem. geol. Soc. Am. 132, 7–22 (1973).

    Google Scholar 

  11. Haggerty, S. E. & Tompkins, L. A. Nature 303, 295–300 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Arculus, R. J. A. Rev. Earth planet. Sci. 13, 75–95 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Basaltic Volcanism Study Project Basaltic Volcanism on the Terrestrial Planets (Pergamon, New York, 1981).

  14. Virgo, D., Luth, R. W., Moats, M. A. & Ulmer, C. Geochim. cosmochim. Acta 52, 1781–1794 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Gudmundson, G., Holloway, J. R. & Carmichael, I. S. E. Trans. Am. geophys. Un. 69, 1511 (1988).

    Google Scholar 

  16. Mo, X., Carmichael, I. S. E., Rivers, M. & Stebbins, T. Mineralog. Mag. 45, 237–245 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Mysen, B. O. & Virgo, D. Phys. Chem. Miner. 12, 191–200 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryndzia, L., Wood, B. & Dick, H. The oxidation state of the Earth's sub-oceanic mantle from oxygen thermobarometry of abyssal spinel peridotites. Nature 341, 526–527 (1989). https://doi.org/10.1038/341526a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341526a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing