Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans

Abstract

THE stable-carbon isotopic composition of marine organic material has varied significantly over geological time, and reflects significant excursions in the isotopic fractionation associated with the uptake of carbon by marine biota1–8. For example, low 13C/12C in Cretaceous sediments has been attributed to elevated atmospheric (and hence oceanic) CO2 partial pressures3,4,8. A similar depletion in 13C in present-day Antarctic plankton2,9–12 has also been ascribed to high CO2 availability3,4. We report, however, that this high-latitude isotope depletion develops at CO2 partial pressures (pCO2 levels) that are often below that of the present atmosphere (340 μatm), and usually below that of equatorial upwelling systems (> 340 μatm). Nevertheless, because of the much lower water temperatures and, hence, greater CO2 solubility at high latitude, the preceding pCO2 measurements translate into Antarctic surface-water CO2 (aq) concentrations that are as much as 2.5-times higher than in equatorial waters. We calculate that an oceanic pCO2 level of > 800 μatm (over twice the present atmospheric pCO2) in a warmer low-latitude Cretaceous ocean would have been required to produce the plankton 13C depletion preserved in Cretaceous sediments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Degens, E. T. in Organic Geochemistry Methods and Results (eds Eglinton, G. & Murphy, M. T. J.) 304–329 (Springer, New York, 1969).

    Book  Google Scholar 

  2. Sackett, W. M., Eadie, B. J. & Exner, M. E. in Advances in Organic Geochemistry 1973 (eds Tissot, B. & Biener, F.) 661–671 (Pergamon, London, 1974).

    Google Scholar 

  3. Arthur, M. A., Dean, W. E. & Claypool, G. E. Nature 315, 216–218 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Dean, W. E., Arthur, M. A. & Claypool, G. E. Mar. Geol. 70, 119–157 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Nature 321, 832–838 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Lewan, M. D. Geochim. cosmochim. Acta 50, 1583–1591 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Sackett, W. M. Org. Geochem. 9, 63–68 (1986).

    Article  CAS  Google Scholar 

  8. Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W. & Baker, E. W. Am. J. Sci. 289, 436–454 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Sackett, W. M., Eckelmann, W. R., Bender, M. L. & Be, A. W. H. Science 148, 235–237 (1965).

    Article  ADS  CAS  Google Scholar 

  10. Eadie, B. J. & Jeffrey, L. M. Mar. Chem. 1, 199–209 (1973).

    Article  CAS  Google Scholar 

  11. Wada, E., Terazaki, M., Kabaya, Y. & Nemoto, T. Deep Sea Res. 34, 829–841 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Biggs, D. C. et al. Ocean Drilling Prog., Init. Rep. vol. 113, 77–86 (U.S. Government Printing Office, Washington, DC, 1987).

    Google Scholar 

  13. Fontugne, M. & Duplessy, J.-C. Earth planet. Sci. Lett. 41, 365–371 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Fontugne, M. & Duplessy, J.-C. Oceanologica Acta 4, 85–90 (1981).

    CAS  Google Scholar 

  15. Degens, E. T., Guillard, R. R. L., Sackett, W. M. & Hellebust, J. A. Deep Sea Res. 15, 1–9 (1968).

    CAS  Google Scholar 

  16. Calder, J. A. & Parker, P. L. Geochim. cosmochim. Acta 37, 133–140 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Pardue, J. W., Scanlan, R. S., van Baalen, C. B. & Parker, P. L. Geochim. cosmochim. Acta 40, 309–312 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Wong, W. W. & Sackett, W. M. Geochim. cosmochim. Acta 42, 1809–1815 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Rau, G. H., Sweeney, R. E. & Kaplan, I. R. Deep Sea Res. 29, 1035–1039 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Descolas-Gros, C. & Fontugne, M. R. Mar. Biol. 87, 1–6 (1985).

    Article  CAS  Google Scholar 

  21. Mizutani, H. & Wada, E. Origins Life 12, 377–390 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Kerby, N. W. & Raven, J. A. Adv. Bot. Res. 11, 71–123 (1985).

    Article  CAS  Google Scholar 

  23. Weiss, R. F. Mar. Chem. 2, 203–215 (1974).

    Article  CAS  Google Scholar 

  24. Sharkey, T. D. & Berry, J. A. in Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms (eds Lucas, W. J. & Berry, J. A.) 389–401 (American Society of Plant Physiology, Rockville, 1985).

    Google Scholar 

  25. McCabe, B. thesis, Univ. Waikato (1985).

  26. Deuser, W. G. Nature 225, 1069–1071 (1970).

    Article  ADS  CAS  Google Scholar 

  27. Smith, S. V. & Kroopnick, P. Nature 294, 252–253 (1981).

    Article  ADS  Google Scholar 

  28. Holm-Hansen, O., El-Sayed, S. Z., Franceschini, G. A. & Cuhel, K. in Adaptions Within Antarctic Ecosystems (ed. Llana, G. A.) 11–50 (Smithsonian Institute, Washington, DC, 1977).

    Google Scholar 

  29. El-Sayed, S. Z. in Marine Phytoplankton and Productivity (eds Holm-Hansen, O., Bolis, L. & Giles, R.) 19–34 (Springer, New York, 1984).

    Book  Google Scholar 

  30. Estep, M. L. F. Geochim. cosmochim. Acta 48, 591–599 (1984).

    Article  ADS  CAS  Google Scholar 

  31. Rau, G. H., Arthur, M. A. & Dean, W. E. Earth planet Sci. Lett. 82, 269–279 (1987).

    Article  ADS  CAS  Google Scholar 

  32. Bralower, T. J. & Thierstein, H. R. Geology 12, 614–618 (1984).

    Article  ADS  CAS  Google Scholar 

  33. Barron, E. J. & Washington, W. M. in The Carbon Cycle and Atmospheric C02: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 504–529 (American Geophysical Union, Washington, DC, 1985).

    Google Scholar 

  34. Lasaga, A. C., Berner, R. A. & Garrels, R. M. in The Carbon Cycle and Atmospheric C02: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 397–411 (American Geophysical Union, Washington, DC, 1985).

    Google Scholar 

  35. Kroopnick, P. M. Deep Sea Res. 32, 57–84 (1985).

    Article  ADS  CAS  Google Scholar 

  36. Chipman, D. W., Takahashi, T. & Sutherland, S. C. Carbon Chemistry of the South Atlantic Ocean and the Weddell Sea: The Results of the Atlantic Long Lines (AJAX) Expeditions, October, 1983–February, 1984. Tech. Rep. to the N.S.F. (Lamont-Doherty Geological Observatory, Palisades, 1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, G., Takahashi, T. & Marais, D. Latitudinal variations in plankton δ13C: implications for CO2 and productivity in past oceans. Nature 341, 516–518 (1989). https://doi.org/10.1038/341516a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341516a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing