Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding

Abstract

THE products of the fos and jun protooncogenes form a stable heterodimer which binds to the TPA-responsive element (TRE) TGACTCA with high affinity1-9. These two proteins, together with the yeast GCN4 protein, belong to a growing family of transcription factors, including FosB, Fral, JunB and JunD, whose members share a highly conserved DNA-binding domain10-14. This domain is composed of two structures: a basic motif, which is thought to bind directly to DNA; and a leucine zipper15, which provides a dimerization interface. Although this domain is highly conserved in Fos, Jun and GCN4, each of these three proteins has very different relative affinities for the TRE. To understand these differences, we used 'domain-swapping' experiments designed to test the relative contributions of the basic motif and the leucine zipper to TRE-binding affinity. Here we show that fos, jun and GCN4 have different affinities for the TRE due to differences in the hetero- or homo-dimerization capacity of their leucine zipper domains; the basic motifs of these three proteins have comparable DNA binding potential. These results indicate that leucine zippers control the types of protein complexes which can associate with a TRE and regulate gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kouzarides, T. & Ziff, E. Nature 336, 646–651 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Sassone-Corsi, P., Ransone, L., Lamph, W. W. & Verma, I. M. Nature 336, 692–695 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Nakabeppu, Y., Ryder, K. & Nathans, D. Cell 55, 907–915 (1988).

    Article  CAS  Google Scholar 

  4. Halazonetis, T. D., Georgopoulos, K., Greenberg, M. E. & Leder, P. Cell 55, 917–924 (1988).

    Article  CAS  Google Scholar 

  5. Rauscher, F. J. III, Voulalas, P. J., Franza Jr, B. R. & Curran, T. Genes Dev. 2, 1687–1699 (1988).

    Article  CAS  Google Scholar 

  6. Schuermann, M. et al. Cell 56, 507–516 (1989).

    Article  CAS  Google Scholar 

  7. Turner, R. & Tjian, R. Science 243, 1689–1694 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Gentz, R., Rauscher, F. J. III, Abate, C. & Curran, T. Science 243, 1695–1699 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Neuberg, M., Schuermann, M., Hunter, J. B. & Muller, R. Nature 338, 589–590 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Zerial, M. et al EMBO J. 8, 805–813 (1989).

    Article  CAS  Google Scholar 

  11. Cohen, D. R. & Curran, T. Molec. cell. Biol. 8, 2063–2069 (1988).

    Article  CAS  Google Scholar 

  12. Ryder, K., Lau, L. F. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 85, 1487–1491 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Ryder, K., Lanahan, A., Perez-Albuerne, E. & Nathans, D. Proc. natn. Acad. Sci. U.S.A. 86, 1500–1503 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Vogt, P. K., Bos, T. J. & Doolittle, R. F. Proc. natn. Acad. Sci. U.S.A. 84, 3316–3319 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. Science 240, 1759–1764 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Hope, I. A. & Struhl, K. Cell. 46, 885–894 (1986).

    Article  CAS  Google Scholar 

  17. Hope, I. A. & Struhl, K. EMBO J. 6, 2781–2784 (1987).

    Article  CAS  Google Scholar 

  18. O'Shea, E. K., Rutkowski, R. & Kim, P. S. Science 243, 538–542 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Vosatka, R. J., Hermanowski-Vosatka, A., Metz, R. & Ziff, E. B. J. Cell Physiol. 138, 493–502 (1989).

    Article  CAS  Google Scholar 

  21. Distel, R. J., Ro, H-S., Rosen, B. S., Groves, D. L. & Spiegelman, B. M. Cell 49, 835–844 (1987).

    Article  CAS  Google Scholar 

  22. Curran, T., Gordon, M. B., Rubino, K. L. & Sambucetti, L. C. Oncogene 2, 80–84 (1987).

    Google Scholar 

  23. Melton, D. A., Krieg, P. A., Rebagliatti, M. R., Maniatis, T., Zinn, K. & Green, R. Nucleic Acids Res. 18, 7035–7056 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouzarides, T., Ziff, E. Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding. Nature 340, 568–571 (1989). https://doi.org/10.1038/340568a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340568a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing