Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust

Abstract

THE origin of zones of high electrical conductivity in the lower continental crust is a long-standing mystery; possible explanations include the presence of brines1,2, partial melt3, serpentine4 and graphite5. When discussing the occurrence of graphite in the crust many petrologists have considered phase relations as they would have existed at the peak of metamorphism or during igneous emplacement6-10. Here we show that a fine film of graphite is present on the grain boundaries in three rocks from the Laramie Anorthosite Complex. In two of these rocks graphite was stable during igneous crystallization but in the other it was not. We maintain that in all of the rocks the grain-boundary graphite precipitated from a CO2-rich fluid during cooling. The chemical processes that produced the grain-boundary graphite in these rocks are likely to operate in many lower-crustal rocks. We therefore contend that, because the films we observe are capable of producing the high conductivity that is seen in the lower crust, grain-boundary graphite should be considered as a possible cause for some conductivity anomalies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lebedev, E. B. & Khitarov, N. I. Geochim. Int. 1, 193–197 (1964).

    Google Scholar 

  2. Hyndman, R. D. & Hyndman, D. W. Earth planet. Sci. Lett. 4, 427–432 (1968).

    Article  ADS  Google Scholar 

  3. Hermance, J. F. Geophysics 38, 3–13 (1973).

    Article  ADS  Google Scholar 

  4. Stesky, R. M. & Brace, W. F. J. geophys. Res. 41, 529–547 (1978).

    Google Scholar 

  5. Alabi, A. O., Camfield, P. A. & Gough, D. I. Geophys. J. R. astr. Soc. 43, 815–833 (1975).

    Article  ADS  Google Scholar 

  6. French, B. M. Rev. Geophys. 4, 223–253 (1966).

    Article  ADS  CAS  Google Scholar 

  7. Ohmoto, H. & Kerrick, D. M. Am. J. Sci. 277, 1013–1044 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Frost, B. R. Am. J. Sci. 279, 1033–1059 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Glassley, W. Nature 295, 229–231 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Lamb, W. & Valley, J. Nature 312, 56–58 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Fuhrman, M. L., Frost, B. R. & Lindsley, D. H. J. Petrology 29, 699–729 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Frost, B. R. & Touret, J. R. L. Contr. Miner. Petrology (in the press).

  13. Waff, H. S. J. geophys. Res. 79, 4003–4010 (1974).

    Article  ADS  Google Scholar 

  14. Keller, G. V. in Handbook of Physical Constants (ed. Clark, S. P.) 553–577 (Geological Society of America, 1966).

    Book  Google Scholar 

  15. Haak, V. & Hutton, R. in The Nature of the Lower Crust (eds Dawson, J. B., Carswell, D. A., Hall, J. & Wedepohl, K. H.) 35–49 (Geological Society, London, 1986).

    Google Scholar 

  16. Duba, A. G. & Shankland, T. J. Geophys. Res. Lett. 9, 1271–1274 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Buddington, A. F. & Lindsley, D. H. J. Petrology 5, 310–357 (1964).

    Article  ADS  CAS  Google Scholar 

  18. Kolker, A. & Lindsley, D. H. Am. Miner. 74, 307–324 (1989).

    CAS  Google Scholar 

  19. Frost, B. R. & Chacko, T. J. Geol. (in the press).

  20. Yardley, B. W. D. Geology 9, 405–408 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Frost, B. R. & Frost, C. D. Nature 327, 503–506 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Touret, J. Lithos 4, 423–436 (1971).

    Article  ADS  Google Scholar 

  23. Pasteris, J. D. Geology 16, 804–807 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Hutton, V. R. S., Ingham, M. R. & Mbipow, E. W. Nature 287, 30–33 (1980).

    Article  ADS  Google Scholar 

  25. Shankland, T. J. & Ander, M. E. J. geophys. Res. 88, 9475–9484 (1983).

    Article  ADS  Google Scholar 

  26. Gough, D. I. Nature 323, 143–147 (1986).

    Article  ADS  Google Scholar 

  27. Yardley, B. W. D. Nature 323, 111 (1986).

    Article  ADS  Google Scholar 

  28. Frost, B. R., Lindsley, D. H., Anderson, D. J. & Davidson, P. M. Geol. Soc. Am. Abstr. Progm. 19, 669 (1987).

    Google Scholar 

  29. Frost, B. R., Lindsley, D. H. & Andersen, D. J. Am. Miner. 73, 727–740 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, B., Fyfe, W., Tazaki, K. et al. Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature 340, 134–136 (1989). https://doi.org/10.1038/340134a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340134a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing