Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Energy budget analysis for Poás crater lake: implications for predicting volcanic activity

Abstract

AWORKING model for many active stratovolcanoes involves a magma column with a frozen cap, cooled by a meteoric-water hydrothermal system. Systems with such high latent and specific heat capacities may easily buffer internal temperatures and apparent surface activity during short-term changes in power output. The surface manifestation of volcanic hydrothermal systems takes the form of boiling mud pools, hot springs, fumaroles, and in about 20–30 cases worldwide, hot crater lakes1–7. The latter are rare because they require special conditions to exist: high water supply, confined fumarole discharge, low permeability substratum and effective sub-surface heat transport. Crater lakes at active volcanoes are in a state of dynamic equilibrium whereby annual water losses through evaporation and infiltration are balanced by additions due to, for example, rainfall and runoff. Any change in volcano power output will directly affect the internal energy and surface heat loss of the lake. Vaporization of water within the hydrothermal system, leading to enhanced steam discharge from fumaroles, can also absorb increased power output. For long-term (months to years) power changes, we propose that crater-lake and fumarole discharge variations may well occur before significant signals on seismic and tilt networks are detected. As an illustration of these ideas, we consider here the recent activity at Poas volcano, Costa Rica.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brantley, S. L., Borgia, A., Rowe, G., Fernandez, J. F. & Reynolds, J. F. Nature 330, 470–472 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Hurst, A. W. in Volcanic Hazards Assessment in New Zealand Vol. 10 (eds Gregory, J. G. & Watters, W. A.) 23–34 (New Zealand Geol. Surv., Lower Hutt, 1986).

    Google Scholar 

  3. Hurst, A. W. & Dibble, R. R. J. Volcan. geotherm. Res. 9, 215–236 (1981).

    Article  ADS  Google Scholar 

  4. Shepherd, J. B. & Sigurdsson, H. J. Volcan. geotherm. Res. 13, 119–130 (1982).

    Article  ADS  Google Scholar 

  5. Shepherd, J. B. & Sigurdsson, H. Nature 271, 344–345 (1978).

    Article  ADS  Google Scholar 

  6. Casadevall, T. J. et al. J. Volcan. geotherm. Res. 23, 169–191 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Thorpe, R. S., Brown, G. C., Rymer, H., Barritt, S. & Randal, M. Earthquake Info. Bull. 17(2), 44–49 (1985).

    Google Scholar 

  8. Rymer, H. thesis, Open Univ. (1985).

  9. Brown, G. C., Rymer, H. & Thorpe, R. S. Earth planet. Sci. Lett. 82, 323–334 (1987).

    Article  ADS  Google Scholar 

  10. Rymer, H. & Brown, G. C. Nature 311, 243–245 (1984).

    Article  ADS  Google Scholar 

  11. Rymer, H. & Brown, G. C. Bull volcan. 49, 389–398 (1987).

    Article  ADS  Google Scholar 

  12. Casertano, L., Borgia, A. & Cigolini, C. Bol. Volc. 14, 95–97 (1984).

    Google Scholar 

  13. Casertano, L. et al. Geofis. Int. 24(2), 315–332 (1985).

    CAS  Google Scholar 

  14. Prosser, J. T. & Carr, M. J. J. Volcan. geotherm. Res. 33, 131–146 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Barquero, J. in Historical Unrest at Large Calderas of the World Vol. 2 (eds Newhall, C. G. & Dzurisin, D.) 878 (USGS Bulletin 1855, Washington DC, 1988).

    Google Scholar 

  16. Scientific Event Alert Network Bull. 13(6), 13–14, 13(9), 8–10 (1988).

  17. Casertano, L. et al. Bull. volcan. 49, 588–598 (1987).

    Article  ADS  Google Scholar 

  18. Weisman, R. N. & Brutsaert, W. Wat. Resour. Res. 9, 1242–1257 (1973).

    Article  ADS  Google Scholar 

  19. Mayhew, Y. R. & Rogers, G. F. C. Thermodynamic and Transport Proporties of Fluids, 20 (Blackwell, Oxford, 1973).

    Google Scholar 

  20. Ryan, P. J., Harleman, D. R. F. & Stolzenbach, K. D. Wat. Resour. Res. 10, 930–938 (1974).

    Article  ADS  Google Scholar 

  21. Rothery, D. A., Francis, P. W. & Wood, C. A. Proc. 6th Thematic Conf. on Remote Sensing. Houston, Texas 1, 283–291 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, G., Rymer, H., Dowden, J. et al. Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339, 370–373 (1989). https://doi.org/10.1038/339370a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/339370a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing