Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Compliance of bacterial flagella measured with optical tweezers

Abstract

THE development of the gradient force optical particle trap ('optical tweezers') has made it possible to manipulate biological materials using a single beam of laser light1. Optical traps can produce forces in the microdyne range on intact cells without causing overt damage: such forces are sufficient to arrest actively swimming bacteria2 and can overcome torque generated by the flagellar motor of a bacterium tethered to a glass surface by a flagellar filament. By calibrating the trapping force against Stokes' drag and measuring the twist that is sustained by this force, we determined the torsional compliance of flagella in tethered Escherichia coli and a motile Streptococcus. Flagella behaved as linear torsion springs for roughly half a revolution, but became much more rigid when turned beyond this point in either direction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ashkin, A. & Dziedzic, J. M. Science 235, 1517–1520 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Ashkin, A., Dziedzic, J. M. & Yamane, T. Nature 330, 769–771 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Berg, H. C. & Anderson, R. A. Nature 245, 380–382 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Berg, H. C., Manson, M. D. & Conley, M. P. Symp. Soc. exp. Biol. 35, 1–31 (1982).

    CAS  PubMed  Google Scholar 

  5. Macnab, R. M. in Escherichia Coli and Salmonella Typhimurium: Cellular and Molecular Biology Vol. 1 (eds Neldhardt, F. C. et al.) 70–83, 732–759 (American Society for Microbiology, Washington DC, 1987).

    Google Scholar 

  6. Macnab, R. M. & Ornston, M. K. J. molec. Biol. 112, 1–30 (1977).

    Article  CAS  Google Scholar 

  7. Silverman, M. & Simon, M. Nature 249, 73–74 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Berg, H. C. Nature 249, 77–79 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Lapidus, I. R., Welch, M. & Eisenbach, M. J. Bact. 170, 3627–3632 (1988).

    Article  CAS  Google Scholar 

  10. Lowe, G., Meister, M. & Berg, H. C. Nature 325, 637–640 (1987).

    Article  ADS  Google Scholar 

  11. Silverman, M., Matsumura, P. & Simon, M. Proc. natn Acad. Sci. U.S.A. 73, 3126–3130 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Block, S. M. & Berg, H. C. Nature 309, 470–472 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Blair, D. F. & Berg, H. C. Science 242, 1678–1681 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Meister, M. & Berg, H. C. Biophys. J. 52, 413–419 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Sheetz, M. P., Block, S. M. & Spudich, J. A. Meth. Enzym. 134, 531–544 (1987).

    Article  Google Scholar 

  16. Berg, H. C. in Cell Motility Vol. A (eds Goldman, R., Pollard, T. & Rosenbaum, J.) 47–56 (Cold Spring Harbor Press, New York, 1976).

    Google Scholar 

  17. Wang, C. W. & Uhlenbeck, G. E. in Selected Papers on Noise and Stochastic Processes (ed. Wax, N.) 113–132 (Dover, New York, 1954).

    Google Scholar 

  18. Fujime, S., Maruyama, M. & Asakura, S. J. molec. Biol. 68, 347–359 (1972).

    Article  CAS  Google Scholar 

  19. Hoshikawa, H. & Kamiya, R. Biophys. Chem. 22, 159–166 (1985).

    Article  CAS  Google Scholar 

  20. Trachtenberg, S. & DeRosier, D. J. J. molec. Biol. 195, 581–601 (1987).

    Article  CAS  Google Scholar 

  21. Silverman, M. R. & Simon, M. I. J. Bact. 112, 986–993 (1972).

    CAS  PubMed  Google Scholar 

  22. Macnab, R. M. Proc. natn Acad. Sci. U.S.A. 74, 221–225 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Nlcklas, B. A. Rev. Biophys. biophys. Chem. 17, 341–449 (1988).

    Google Scholar 

  24. Block, S. M., Segall, J. E. & Berg, H. C. Cell 31, 215–226 (1982).

    Article  CAS  Google Scholar 

  25. Manson, M. D., Tedesco, P. M. & Berg, H. C. J. molec. Biol. 138, 541–561 (1980).

    Article  CAS  Google Scholar 

  26. Berg, H. C. & Block, S. M. J. gen. Microbiol. 130, 2915–2920 (1984).

    CAS  PubMed  Google Scholar 

  27. Press, W. H. et al. in Numerical Recipes in C: The Art of Scientific Computing Ch. 12 (Cambridge University Press, 1988).

    MATH  Google Scholar 

  28. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity 2nd edn 68–75 (Pergamon, Oxford, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Block, S., Blair, D. & Berg, H. Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514–518 (1989). https://doi.org/10.1038/338514a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338514a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing