Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional cooperativity between protein molecules bound at two distinct sequence elements of the immunoglobulin heavy-chain promoter

Abstract

Immunoglobulin heavy-chain gene promoters contain two conserved upstream sequence elements, octamer and heptamer1–4, both of which are required for normal cell type-specific promoter function in vivo4–6. The octamer sequence motif 5′-ATGCAAAT-3′, and its precise inverse, are strongly conserved in heavy- and light-chain gene promoters1,2 and are important determinants for the lymphoid-specific function of these promoters7–9 and of the heavy-chain enhancer10,11. The heptameric sequence element with the consensus 5′-CTCATGA-3′ (refs 3 and 4) is also required in addition to the octamer for full lymphoid-specific activity of heavy-chain promoters4,6. Although these two elements have no sequence similarity, they are both recognized in vitro12 by the ubiquitous octamer transcription factor OTF-1 (reviewed in refs 13 and 14) and the lymphoid-specific OTF-2 (reviewed in refs 15 and 16). Here we show that purified OTF-2 binds cooperatively to the immunoglobulin heptamer and octamer elements so that interaction with the octamer element facilitates binding of OTF-2 to the heptamer motif. More important, cooperativity in OTF-2 binding is closely mirrored by functional cooperation between the heptamer and octamer elements in activating transcription from the heavy-chain promoter in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Falkner, F. G. & Zachau, H. G. Nature 310, 71–74 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Parslow, T. G., Blair, D. L., Murphy, W. J. & Granner, D. K. Proc. natn. Acad. Sci. U.S.A. 81, 2650–2654 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Siu, G., Springer, E. A., Huang, H. V., Hood, L. E. & Crews, S. T. J. Immun. 138, 4466–4471 (1987).

    CAS  PubMed  Google Scholar 

  4. Eaton, S. & Calame, K. Proc. natn. Acad. Sci. U.S.A. 84, 7634–7638 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Mason, J. O., Williams, G. T. & Neuberger, M. S. Cell 41, 479–487 (1985).

    Article  CAS  Google Scholar 

  6. Ballard, D. W. & Bothwell, A. Proc. natn. Acad. Sci. U.S.A. 83, 9626–9630 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Mizushima-Sugano, J. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 83, 8511–8515 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Dreyfus, M., Doyen, N. & Rougeon, F. EMBO J. 6, 1685–1690 (1987).

    Article  CAS  Google Scholar 

  9. Wirth, T., Slaudt, L. & Baltimore, D. Nature 329, 174–178 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Gerster, T., Matthias, P., Thali, M., Jiricny, J. & Schaffner, W. EMBO J. 6, 1323–1330 (1987).

    Article  CAS  Google Scholar 

  11. Lenardo, M., Pierce, J. W. & Baltimore, D. Science 236, 1573–1577 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Poellinger, L. & Roeder, R. G. Molec. cell. Biol. 9, 747–756 (1989).

    Article  CAS  Google Scholar 

  13. Fletcher, C., Heintz, N. & Roeder, R. G. Cell 51, 773–781 (1987).

    Article  CAS  Google Scholar 

  14. O'Neill, E. A. et al. Science 241, 1210–1213 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Scheidereit, C., Heguy, A. & Roeder, R. G. Cell 51, 783–793 (1987).

    Article  CAS  Google Scholar 

  16. Scheidereit, C. et al. Nature 336, 551–557 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Landolfi, N. F., Capra, D. J. & Tucker, P. W. Nature 323, 548–551 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Staudt, L. M. et al. Nature 323, 640–643 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Ko, H.-S., Fast, P., McBride, W. & Staudt, L. M. Cell 55, 135–144 (1988).

    Article  CAS  Google Scholar 

  20. Weinberger, J., Baltimore, D. & Sharp, P. A. Nature 322, 846–848 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Westin, G., Gerster, T., Muller, M., Schaffner, G. & Schaffner, W. Nucleic Acids Res. 15, 6787–6798 (1987).

    Article  CAS  Google Scholar 

  22. LeBowitz, J. H., Kobayashi, T., Staudt, L., Baltimore, D. & Sharp, P. A. Genes Dev. 2, 1227–1237 (1988).

    Article  CAS  Google Scholar 

  23. Hochschild, A. & Ptashne, M. Cell 44, 681–687 (1986).

    Article  CAS  Google Scholar 

  24. Robertson, M. Nature 327, 464–466 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Horikoshi, M., Carey, M. F., Kakidani, H. & Roeder, R. G. Cell 54, 665–669 (1988).

    Article  CAS  Google Scholar 

  27. Van Dyke, M., Roeder, R. G. & Sawadogo, M. Science 241, 1335–1338 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Horikoshi, M., Hai, T., Lin, Y.-S., Green, M. & Roeder, R. G. Cell 54, 1033–1042 (1988).

    Article  CAS  Google Scholar 

  29. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. Science 240, 1759–1764 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Robertson, M. Nature 336, 522–524 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  32. Weaver, R. F. & Weissman, C. Nucleic Acids. Res. 7, 1175–1193 (1979).

    Article  CAS  Google Scholar 

  33. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poellinger, L., Yoza, B. & Roeder, R. Functional cooperativity between protein molecules bound at two distinct sequence elements of the immunoglobulin heavy-chain promoter. Nature 337, 573–576 (1989). https://doi.org/10.1038/337573a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337573a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing