Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of hydrogen ion and sulphate on the phosphorus cycle of a Precambrian Shield lake

Abstract

The possible deleterious effect of sulphuric acid in rain on algal abundance and productivity, by altering phosphorus recycling from sediments, has received considerable attention1–3 Here I test contradictory hypotheses which predict inhibited recycling of phosphorus in response to elevated H+ concentration, and enhanced recycling in response to elevated SO2−4. The concentrations of these ions were manipulated over two years in enclosures placed in the seasonally anoxic hypolimnion of a small Precambrian Shield lake. Seasonal releases of phosphorus from sediments in enclosures were not affected by acidification with either HC1 or H2SO4 but increased by a factor of five in enclosures amended with sulphate salt (Na2SO4). The data suggests that enhanced phosphorus release was due to net alkalinity gain (alkalization) from reduction of sodium sulphate to sodium sulphide. Hence, lakes can be indirectly fertilized by addition of sulphate salts but not by addition of sulphuric acid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grahn, O., Hultberg, H. & Landner, L. Ambio 3, 93–94 (1974).

    Google Scholar 

  2. Dickson, W. in Ecological Effects of Acid Precipitation (eds Drablos, D. & Tolan, A.) 75–83 (SNSF Project, Oslo, Norway, 1980).

    Google Scholar 

  3. Schindler, D. W. et al. Science 228, 1395–1401 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Vollenweider, R. A. Tech. Rep. OECD Paris, DAS/CSI/62.27, 82 (1968).

  5. Schindler, D. W. Science 184, 897–899 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Schindler, D. W., Fee, E. J. & Ruszczynski, T. J. Fish. Res. Bd Can. 35, 190–196 (1978).

    Article  CAS  Google Scholar 

  7. Mortimer, C. H. Ecology 29, 280–329 (1942).

    Article  Google Scholar 

  8. Mortimer, C. H. Ecology 39, 147–200 (1943).

    Google Scholar 

  9. Sholkovitz, E. R. & Copland, D. Geochim. cosmochim. Acta 46, 393–410 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Hasler, A. D. & Einsele, W. Trans. 13th N. Am. Wildlife Conf. 527–554 (1948).

  11. Baccini, P. in Chemical Processes in Lakes (ed. Stumm, W.) 189–205 (Wiley-Interscience, New York, 1985).

    Google Scholar 

  12. Orton, W. S. et al. in Characteristics of Lakes in the Eastern United States Vol. 2, US EPA/600/4-86/007b (1986).

    Google Scholar 

  13. Turekian, K. K. in Handbook of Geochemistry Vol. 1 (ed. Wedepohl, K. H. ) 297 (Springer, Berlin, 1969).

    Book  Google Scholar 

  14. Brunskill, G. J., Povoledo, D., Graham, B. W. & Stainton M. P. J. Fish. Res. Bd Can. 28, 277–294 (1971).

    Article  CAS  Google Scholar 

  15. Schindler, D. W., Hesslein, R. H. & Turner, M. A. Can. J. Fish. aquat. Sci. Suppl. 44, 26–33 (1987).

    Article  CAS  Google Scholar 

  16. Levine, S. N., Stainton, M. P. & Schindler, D. W. Can. J. Fish. aquat. Sci. 43, 366–378 (1986).

    Article  CAS  Google Scholar 

  17. Perrson, G. & Broberg, O. Ecol. Bull. (Stockholm) 37, 158–175 (1985).

    Google Scholar 

  18. Schindler, D. W., Newbury, R. W., Beaty, K. G. & Campbell, P. J. Fish. Res. Bd Can. 33, 2526–2543 (1976).

    Article  CAS  Google Scholar 

  19. Carignan, R. & Tessier, A. Geochim. cosmochim. Acta 52, 1179–1188 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Ben-Yaakov, S. Limnol. Oceanogr. 18, 86–94 (1973).

    Article  ADS  CAS  Google Scholar 

  21. Rudd, J. W. M. et al. Limnol. Oceanogr. 31, 1267–1280 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Stumm, W. & Morgan, J. J. in Aquatic Chemistry (Wiley-Interscience, New York, 1981).

    Google Scholar 

  23. Wilander, A. & Ahl, T. Vatten 5, 431–445 (1972).

    Google Scholar 

  24. Ontario Ministry of the Environment, in Studies of Lakes and Watersheds Near Sudbury, Ontario, Chap. 2 (1981).

  25. Wright, R. F. NIVA Rep. 0-80044-01 (Royal Council for Scientific and Industrial Research, 1984).

  26. Stauffer, R. F. Limnol. Oceanogr. 30, 123–145 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Kilham, P. Limnol. Oceanogr. 27, 856–867 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Schindler, D. W., Turner, M. A. & Hesslein, R. H. Biogeochemistry 1, 117–133 (1985).

    Article  CAS  Google Scholar 

  29. Standard Methods Vol 14 208 (American Public Health Association, 1975).

  30. Stainton, M. P., Capel, M. & Armstrong, F. A. J. Fish. aquat. Sci. misc. Publs 25, 166 (1977).

    Google Scholar 

  31. Murphy, J. & Riley, J. P. Anal. Chim. Acta 27, 31–36 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, P. Effects of hydrogen ion and sulphate on the phosphorus cycle of a Precambrian Shield lake. Nature 337, 156–158 (1989). https://doi.org/10.1038/337156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337156a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing