Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geotherms in the Pacific Ocean from laboratory and seismic attenuation studies

Abstract

Seismic methods have been used extensively to measure attenuation coefficients in various regions of the Earth. Attenuation is inversely related to the quality factor Q, which may be measured directly. A low-velocity and high-attenuation zone in the upper mantle is commonly reported1–3. Until now, there has been no direct means to derive thermal structures from such seismic investigations. Recently, Q values have been determined in the laboratory for a dry peridotite, an upper mantle rock, for pressures and temperatures of up to 0.73 GPa and 1,280 °C respectively4. The results indicate a quantifiable relation between Q and temperature. Here we use these results to derive geotherms from Q measurements for a region beneath the Pacific Ocean. The geotherms are consistent with temperatures obtained from heat flow observations5,6, and imply that the oceanic upper mantle is rather dry. In asthenos-phere older than 40 Myr, geotherms for this region are sub-solidus and no partial melt is expected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, J. R. & Sacks, I. S. J. geophys. Res. 84, 6859–6866 (1979).

    Article  ADS  Google Scholar 

  2. Canas, J. A. & Mitchell, B. J. Bull. seismol. Soc. Am. 68, 1637–1650 (1978).

    Google Scholar 

  3. Chan, W. W., Sacks, I. S. & Morrow, R. J. J. geophys. Res. (submitted).

  4. Sato, H., Sacks, I. S., Murase, T., Muncill, G. E. & Fukuyama, H. J. geophys. Res. (submitted).

  5. Chapman, D. S. & Pollack, H. N. Geology 5, 265–268 (1977).

    Article  ADS  Google Scholar 

  6. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  7. Sato, H., Sacks, I. S., Murase, T., Muncill, G. E. & Fukuyama, H. Pure appl. Geophys. (in the press).

  8. Kampfmann, W. & Berckhemer, H. Phys. Earth planet. Inter. 40, 223–247 (1985).

    Article  ADS  Google Scholar 

  9. Takahashi, E. J. geophys. Res. 91, 9367–9382 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Nachtrieb, N. H., Resing, H. A. & Rice, S. A. J. chem. Phys. 31, 135–138 (1959).

    Article  ADS  CAS  Google Scholar 

  11. Sherby, O. D. & Simnad, M. T. Trans. Am. Soc. Met. 54, 227–240 (1961).

    CAS  Google Scholar 

  12. Weertman, J. Rev. Geophys. Space Phys. 8, 145–168 (1970).

    Article  ADS  Google Scholar 

  13. Borch, R. S. & Green, H. W. Nature 330, 345–348 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Sato, H., Sacks, I. S. & Murase, T. J. geophys. Res. (submitted).

  15. Anderson, D. L., Menahem, A. B. & Archambeau, C. B. J. geophys. Res. 70, 1441–1448 (1965).

    Article  ADS  Google Scholar 

  16. Gilbert, F. & Dziewonski, A. M. Phil. Trans. R. Soc. 278, 187–269 (1975).

    Article  ADS  Google Scholar 

  17. Ave Lallemant, H. G., Mercier, J. C. C., Carter, N. L. & Ross, J. V. Tectonophys. 70, 85–113 (1980).

    Article  Google Scholar 

  18. Ke, T. S. J. appl. Phys. 20, 274–280 (1949).

    Article  ADS  CAS  Google Scholar 

  19. Leak, G. M. Proc. phys. Soc. 78, 1520–1528 (1961).

    Article  ADS  CAS  Google Scholar 

  20. Kjartansson, E. J. geophys. Res. 84, 4737–4748 (1979).

    Article  ADS  Google Scholar 

  21. Leeds, A. R., Knopoff, L. & Kausel, E. G. Science 186, 141–143 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Yoshii, T. Earth planet. Sci. Lett. 25, 305–312 (1975).

    Article  ADS  Google Scholar 

  23. Sato, H. & Sacks, I. S. J. geophys. Res. (submitted).

  24. Geodynamics Applications of Continuum Physics to Geological Problems (eds Turcotte, D. L. & Schubert, G.) (Wiley, New York, 1982).

  25. Brown, J. M. & Shankland, T. J. Geophys. J. R. astr. Soc. 66, 579–596 (1981).

    Article  ADS  Google Scholar 

  26. Anderson, O. L. in Evolution of the Earth (eds O'Connell, R. J. & Fyfe, W. S.) 19–27 (Am. Geophys. Un., Washington, DC, 1981).

    Book  Google Scholar 

  27. Stacey, F. D. Phys. Earth planet. Inter. 15, 341–348 (1977).

    Article  ADS  Google Scholar 

  28. Mercier, J.-C. & Carter, N. L. J. geophys. Res. 80, 3349–3362 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Navrotsky, A. & Akaogi, M. J. geophys. Res. 89, 10135–10140 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, H., Sacks, I., Takahashi, E. et al. Geotherms in the Pacific Ocean from laboratory and seismic attenuation studies. Nature 336, 154–156 (1988). https://doi.org/10.1038/336154a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing