Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The lunar orbit in the late Precambrian and the Elatina sandstone laminae

Abstract

The discovery of layered sediments of the Elatina Formation of South Australia has attracted intense speculation regarding their origin1,2. The formation 10-m layer of graded sandstone, consists of a pattern of light bands of periodically varying thickness3. A sequence of dark bands separates, on average, 11.6 light bands; the spacing of these dark bands exhibits a rich and complex spectrum. Previously, the periodicity has been attributed to the sunspot cycle and unassigned but putative solar periods. Prompted by a letter from G. E. Williams, summarizing new field data from the Adelaide region, South Australia, which imply that the Elatina varves may be tidal, we re-examined the dark-band spectrum and propose a luni-solar tidal interaction model as the source of the laminae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, G. E. Nature 291, 624–628 (1981).

    Article  ADS  Google Scholar 

  2. Williams, G. E. Aust. J. Phys. 38, 1027–1043 (1985).

    Article  ADS  Google Scholar 

  3. Finney, S. A., Williams, C. R. & Sonetl, C. P. Proc. 19th Lunar and Planetary Sci. Conf. 331–332 (Lunar & Planetary Inst., Houston, 1988).

  4. Stacey, F. D. Physics of the Earth (Wiley, New York, 1977).

    Google Scholar 

  5. Defant, A. Physical Oceanography, Vol. 2 (Pergamon, Oxford, 1961).

    Google Scholar 

  6. Williams, G. E. Aust. J. Phys. 38, 1027–1043 (1985).

    Article  ADS  Google Scholar 

  7. Prior, D. B., Bornhold, Brian D., Wiseman, W. J. Jr & Lower, D. R. Science 237, 1330–1333 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Sonett, C. P. & Williams, G. E. Sol. Phys. 110, 397–410 (1987).

    Article  ADS  Google Scholar 

  9. Williams, G. E. & Sonett, C. P. Nature 318, 523–527 (1985).

    Article  ADS  Google Scholar 

  10. Brouwer, D. & Clemence, G. M. Methods of Celestial Mechanics (Academic, New York, 1961).

    MATH  Google Scholar 

  11. Danby, J. M. A. Fundamentals of Celestial Mechanics (MacMillan, New York, 1962).

    Google Scholar 

  12. Newhall, X. X., Williams, J. G. & Dicke, J. O. in Rotation and Reference Frames for Geodesy and Geodynamics (eds Babcock, A. K. & Wilkins, G. A.) 159–164 (Reidel, Dordrecht, 1988).

    Google Scholar 

  13. Hansen, K. S. Rev. Geophys. Spa. Res. 20, 457–480 (1982).

    Article  ADS  Google Scholar 

  14. Creer, K. M. in Growth Rhythms and The History of The Earth's Rotation (eds Rosenberg, G. D. & Runcorn, S. K.) 293–318 (Wiley, New York, 1975).

    Google Scholar 

  15. Muller, M. & Stephenson, F. R. in Growth Rhythms and The History of The Earth's Rotation (eds Rosenberg, G. D. & Runcorn, S. K.) 459–534 (Wiley, New York, 1975).

    Google Scholar 

  16. Calame, O. & Mulholland, J. D. in Tidal Friction and The Earth's Rotation (eds Brosche, P. & Sünderman, J.) 43–54 (Springer, Berlin, 1978).

    Google Scholar 

  17. Jeffreys, H. The Earth (Cambridge University Press, 1970).

    MATH  Google Scholar 

  18. Tarling, D. H. in Growth Rhythms and The History of The Earth's Rotation (eds Rosenberg, G. D. & Runcorn, S. K.) 397–426 (Wiley, New York, 1975).

    Google Scholar 

  19. Morrison, L. V. in Growth Rhythms and The History of The Earth's Rotation (eds Rosenberg, G. D. & Runcorn, S. K.) 445–458 (Wiley, New York, 1975).

    Google Scholar 

  20. Miller, G. R. J. geophys. Res. 485–489 (1966).

  21. Smith, A. G. & Hallam, A. Nature 225, 139–144 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonett, C., Finney, S. & Williams, C. The lunar orbit in the late Precambrian and the Elatina sandstone laminae. Nature 335, 806–808 (1988). https://doi.org/10.1038/335806a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335806a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing