Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of antibody hypervariable loops reproduced by a conformational search algorithm

A Corrigendum to this article was published on 01 November 1988

Abstract

The antigen-combining site of antibody molecules consists of six separate loops supported by a conserved β-sheet framework; antibody specificity arises from length and sequence variation of these 'hypervariable' loops1 and can be manipulated by transferring sets of loops between different frameworks2. Irregular loops are the most difficult parts of protein structure to understand and to model correctly3–6. Here, we describe two computer experiments where all the hypervariable loops were deleted from X-ray structures of mouse immunoglobulins and reconstructed using the conformational search program CONGEN7. A protocol was developed for reconstruction of the hypervariable loops in McPC 603 antibody. Calculated loop conformations were generated and a model of the combining site was built from selected low-energy conformations. We then modelled hypervariable loops in another antibody molecule, HyHEL-5. Both models agreed well with the known crystal structures. Our results hold out promise for the success of future modelling studies of complete antigen-combining sites from amino acid sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wu, T. T. & Kabat, E. A. J. exp. Med 132, 211–250 (1970).

    Article  CAS  Google Scholar 

  2. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Nature 321, 522–525 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Richardson, J. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  4. Sibanda, B. L. & Thornton, J. Nature 316, 170–174 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Rose, G. D., Gierasch, I. M. & Smith, J. A. Adv. Protein Chem. 37, 1–50 (1985).

    Article  CAS  Google Scholar 

  6. Leszczynski, J. F. & Rose, G. D. Science 234, 849–855 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Bruccoleri, R. E. & Karplus, M. Biopolymers 26, 137–168 (1987).

    Article  CAS  Google Scholar 

  8. Kabat, E. A. & Wu, T. T. Proc. natn. Acad. Sci. U.S.A. 69, 960–964 (1972).

    Article  ADS  CAS  Google Scholar 

  9. Chothia, C. et al. Science 233, 755–758 (1986).

    Article  ADS  CAS  Google Scholar 

  10. de la Paz, P., Sutton, B. J., Darsley, M. J. & Rees, A. R. EMBO J. 5, 415–425 (1986).

    Article  CAS  Google Scholar 

  11. Fine, R. M., Wang, H., Shenkin, P. S., Yarmush, D. L. & Levinthal, C. Proteins 1, 342–362 (1986).

    Article  CAS  Google Scholar 

  12. Smith-Gill, S. J. et al. J. molec. Biol. 194, 713–724 (1987).

    Article  CAS  Google Scholar 

  13. Chothia, C. & Lesk, A. M. J. molec. Biol. 196, 901–917 (1987).

    Article  CAS  Google Scholar 

  14. Shih, H. L., Brady, J. & Karplus, M. Proc. natn. Acad. Sci. U.S.A. 82, 1697–1700 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Snow, M. E. & Amzel, M. L. Proteins 1, 276–279 (1986).

    Article  Google Scholar 

  16. Moult, J. & James, M. N. G. Proteins 1, 146–163 (1986).

    Article  CAS  Google Scholar 

  17. Satow, Y., Cohen, G. H., Padlan, E. A. & Davies, D. R. J. molec. Biol. 190, 593–604 (1986).

    Article  CAS  Google Scholar 

  18. Gō, N. & Scheraga, H. A. Macromolecules 3, 178–187 (1970).

    Article  ADS  Google Scholar 

  19. Bruccoleri, R. E. & Karplus, M. Macromolecules 18, 2767–2773 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Brooks, B. et al. J. comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  21. Chothia, C., Novotny, J., Bruccoleri, R. E. & Karplus, M. J. molec. Biol. 186, 651–663 (1985).

    Article  CAS  Google Scholar 

  22. Novotny, J. & Haber, E. Proc. natn. Acad. Sci. U.S.A. 82, 4592–4596 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Lee, B. K. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  24. Rashin, A. A. Biopolymers 23, 1605–1620 (1984).

    Article  CAS  Google Scholar 

  25. Novotny, J., Bruccoleri, E. R. & Karplus, M. J. molec. Biol. 177, 787–818 (1984).

    Article  CAS  Google Scholar 

  26. Eisenberg, D. & McLachlan, A. Nature 319, 199–203 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Ooi, T., Oobatake, M., Nemethy, G. & Scheraga, H. A. Proc. natn. Acad. Sci. U.S.A. 84, 3086–3090 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Chou, P. Y. & Fasman, G. Biochemistry 16, 222–244 (1974).

    Article  Google Scholar 

  29. Dyson, H. J. et al. Nature 318, 480–483 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Pincus, M. R., Klausner, R. D. & Scheraga, H. A. Proc. natn. Acad. Sci. U.S.A. 79, 5107–5110 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruccoleri, R., Haber, E. & Novotný, J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature 335, 564–568 (1988). https://doi.org/10.1038/335564a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335564a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing